Skip to main content

Surface Sterilization by Atmospheric Pressure Non-thermal Plasma

  • Chapter
  • First Online:
Plasma Remediation Technology for Environmental Protection

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Surface sterilization using atmospheric pressure non-thermal plasma is rapid and effective. In this study, the humid air gliding arc discharge was selected as the atmospheric pressure non-thermal plasma source. It is found that inactivation rate had reached 72.3% at the initial 0.5-min treatment and a total inactivation of the bacterial population was achieved within only 1.5 min. The dynamic sterilization under different air flow rates and gap distances shows that increasing air flow rates and shorter discharge gap distance could improve sterilization efficiency. Although gap distance also influenced treatment surface temperature, even after 1.5-min treatment at the shortest gap distance of 1.5 cm, the surface temperature was still below 45 °C, which is insufficient to kill bacteria via purely thermal effects. Analysis of the scanning electron microscopic (SEM) images of bacterial cells demonstrated that the atmospheric pressure non-thermal plasma is acting under various mechanisms driven essentially by an oxidation effect. The experimental results show that humid air gliding arc discharge is a promising candidate among the emerging non-thermal plasma technology for decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26(6):610–7.

    Article  CAS  Google Scholar 

  2. Chen FN, Yang XD, Wu Q. Photocatalytic oxidation of Escherischia coli, Aspergillus niger, and formaldehyde under different ultraviolet irradiation conditions. Environ Sci Technol. 2009;43(12):4606–11.

    Article  CAS  Google Scholar 

  3. Burlica R, Grim RG, Shih KY, Balkwill D, Locke BR. Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Process Polym. 2010;7(8):640–9.

    Article  CAS  Google Scholar 

  4. Bruggeman P, Leys C. Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys. 2009;42(5):053001 (28 pp).

    Google Scholar 

  5. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Youbi GK, Herry JM, Naitali M, Bellon-Fontaine MN. Chemical reactivity of discharges and temporal post–discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind Eng Chem Res. 2008;47(16):5761–81.

    Article  CAS  Google Scholar 

  6. Lesueur H, Czernichowski A. Device for generating low-temperature plasmas by formation of sliding electric discharges. Patent FR2639172. 1990.

    Google Scholar 

  7. Czernichowski A. Gliding arc applications to engineering and environment control. Pure Appl Chem. 1994;66(6):1301–10.

    Article  CAS  Google Scholar 

  8. Krawczyk K, Ulejczyk B. Decomposition of chloromethanes in gliding discharges. Plasma Chem Plasma P. 2003; 23(2):265–81.

    Google Scholar 

  9. Ferenc Z, Wandrasz JW. Use of GLIDARC reactor for decomposition of toluene vapours in hot exhausts. High Temp Mater P. 2004; 8(1):31–7.

    Google Scholar 

  10. Du CM, Wang J, Zhang L, Li HX, Liu H, Xiong Y. The application of a non–thermal plasma generated by gas–liquid gliding arc discharge in sterilization. New J Phys. 2012; 14:013010 (16 pp).

    Google Scholar 

  11. Yan JH, Du CM, Li XD, Sun XD, Ni MJ, Cen KF. Plasma chemical degradation of phenol in solution by gas–water gliding arc discharge. Plasma Sources Sci Technol. 2005;14(4):637–44.

    Article  CAS  Google Scholar 

  12. Wang J. Basic research on the inactivation of bacterium by plasma generated by gliding arc discharge. Yat–sen University. 2011.

    Google Scholar 

  13. Du CM. Non-thermal arc plasma technology and application. Beijing: Chemical Industry Press; 2015.

    Google Scholar 

  14. Ponniah G, Chen H, Michielutti R, Salonen N, Blum P. Single-cell protein profiling of wastewater enterobacterial communities predicts disinfection efficiency. Appl Environ Microb. 2003;69(7):4227–35.

    Article  CAS  Google Scholar 

  15. Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A. Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol. 2009;48(1):13–8.

    Google Scholar 

  16. Benstaali B, Moussa D, Sauvage L, Addou A, Cheron BG, Brisset JL, editors. Interaction between plasma and aqueous solutes. In: The Proceedings of the International Symposium on High Pressure, Low Temperature Plasma Chemistry, Hakone VI, Cork, Ireland. 1998.

    Google Scholar 

  17. Benstaali B, Moussa D, Addou A, Brisset JL. Plasma treatment of aqueous solutes: some chemical properties of gliding arc in humid air. Eur Phys J-Appl Phys. 1998;4(2):171–9.

    Article  CAS  Google Scholar 

  18. Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom. 2004;233(1–3):81–6.

    Article  CAS  Google Scholar 

  19. Moussa D, Naitali M, Herry JM, Hnatiuc B, Brisset JL. Reactions induced by electrical discharges in pollutant abatement and bacterial inactivation. 12th International Conference on Optimization of Electrical and Electronic Equipment; 2010. p. 1329–1335.

    Google Scholar 

  20. Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia L. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J Biomed Mater Res. 2000;51(1):128–35.

    Article  CAS  Google Scholar 

  21. Gaunt LF, Beggs CB, Georghiou GE. Bactericidal action of the reactive species produced by gas–discharge nonthermal plasma at atmospheric pressure: A review. Ieee T Plasma Sci. 2006;34(4):1257–69.

    Article  CAS  Google Scholar 

  22. Moreau M, Feuilloley MGJ, Orange N, Brisset JL. Lethal effect of the gliding arc discharges on Erwinia spp. J Appl Microbiol. 2005;98(5):1039–46.

    Article  CAS  Google Scholar 

  23. Doroszkiewicz W, Sikorska I, Jankowski S. Studies on the influence of ozone on complement–mediated killing of bacteria. FEMS Immunol Med Mic. 1994;9(4):281–5.

    Article  CAS  Google Scholar 

  24. Gardner CR, Robson EA, Stanford C. The presence of monoamines in the nervous system of Peripatopsis (Onychophora). Experientia. 1978;34(12):1577–8.

    Article  CAS  Google Scholar 

  25. Ishizaki K, Sawadaishi K, Miura K, Shinriki N. Effect of ozone on plasmid DNA of Escherichia coli in situ. Water Res. 1987;21(7):823–7.

    Article  CAS  Google Scholar 

  26. Du CM, Sun YW, Zhuang XF. The effects of gas composition on active species and byproducts formation in gas-water gliding arc discharge. Plasma Chem Plasma P. 2008;28(4):523–533.

    Google Scholar 

  27. Benstaali B, Boubert P, Cheron BG, Addou A, Brisset JL. Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air. Plasma Chem Plasma P. 2002;22(4):553–71.

    Google Scholar 

  28. Halliwell B, Gutteridge JMC. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med. 1985;8(2):89–193.

    Article  CAS  Google Scholar 

  29. Talaro. KP, Chess. B. Foundations in microbiology: basic principles. New York: McGraw-Hill; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangMing Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press, Hangzhou and Springer Natue Singapore Pte Ltd.

About this chapter

Cite this chapter

Du, C., Yan, J. (2017). Surface Sterilization by Atmospheric Pressure Non-thermal Plasma. In: Plasma Remediation Technology for Environmental Protection. Advanced Topics in Science and Technology in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-3656-9_5

Download citation

Publish with us

Policies and ethics