Skip to main content

Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma

  • Chapter
  • First Online:
Plasma Remediation Technology for Environmental Protection

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

In this chapter, the reduction and removal of Cr(VI) from aqueous solution by microplasma are explained, which represents a new and fascinating realm of plasma science for the first time. The effect of various process parameters on the Cr(VI) reduction efficiency and the effect of initial pH and ethanol on the removal of Cr(VI) are systematically examined. The optimum condition for Cr(VI) reduction was initial pH at 2 with stir where the microdischarge gas was argon with the flow rate of 60 mL/min. The reduction efficiency of Cr(VI) increased with an increase in input power but decreased with an increasing initial concentration of Cr(VI). In particular, additive hydroxyl radical scavenger (ethanol) greatly improved the reduction efficiency and facilitated the removal of chromium dissolved in the solution. The best removal efficiency was obtained when the pH was 6. In addition, the energy efficiency of microplasma to reduce Cr(VI) is 2.0 × 10−4 mg/J and is comparable to that in electrolysis and other forms of glow discharge. The advantages, such as low cost, scalability, and easy operating techniques, of this approach have broad prospects in water treatment (Xiao in Removal of hexavalent chromium in water and preparation of cuprous oxide nanoparticles by microplasma. Yat–sen University, 2012, [1]; Du in Non-Thermal arc plasma technology and application. BeiJing: Chemical Industry Press, 2015, [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiao MD. Removal of hexavalent chromium in water and preparation of cuprous oxide nanoparticles by microplasma. Yat–sen University; 2012.

    Google Scholar 

  2. Du CM. Non-Thermal arc plasma technology and application. BeiJing: Chemical Industry Press; 2015.

    Google Scholar 

  3. Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Poll. 2010;215(1–4):631–43.

    Google Scholar 

  4. Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Poll. 2008;200(1–4):59–77.

    Google Scholar 

  5. Mungasavalli DP, Viraraghavan T, Jin YC. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloid Surf A. 2007;301(1–3):214–23.

    Article  CAS  Google Scholar 

  6. Pugazhenthi G, Sachan S, Kishore N, Kumar A. Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. J Membr Sci. 2005;254(1–2):229–39.

    Article  CAS  Google Scholar 

  7. Gupta VK, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 2001;35(5):1125–34.

    Article  CAS  Google Scholar 

  8. Mohan D. Pittman CUJr. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater. 2006;137(2):762–811.

    Article  CAS  Google Scholar 

  9. Kumar PA, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. J Hazard Mater. 2007;143(1–2):24–32.

    Article  CAS  Google Scholar 

  10. Chakravarti AK, Chowdhury SB, Chakrabarty S, Chakrabarty T, Mukherjee DC. Liquid membrane multiple emulsion process of chromium(VI) separation from waste waters. Colloid Surf A. 1995;103(1–2):59–71.

    Article  CAS  Google Scholar 

  11. Pagilla KR, Canter LW. Laboratory studies on remediation of chromium-contaminated soils. J Environ Eng-Asce. 1999;125(3):243–8.

    Article  CAS  Google Scholar 

  12. Nataraj SK, Hosamani KM, Aminabhavi TM. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalin. 2007;217(1–3):181–90.

    Article  CAS  Google Scholar 

  13. Liu Y. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis. J Hazard Mater. 2009;168(2–3):992–6.

    Article  CAS  Google Scholar 

  14. Fang XH, Zhang GQ, Chen J, Wang D, Yang FL. Electrochemical reduction of hexavalent chromium on two-step electrosynthesized one-dimensional polyaniline nanowire. Int J Electrochem Sc. 2012;7(12):11847–58.

    CAS  Google Scholar 

  15. Valix M, Cheung WH, Zhang K. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J Hazard Mater. 2006;135(1–3):395–405.

    Article  CAS  Google Scholar 

  16. Wang L, Jiang XZ. Plasma-induced reduction of chromium(VI) in an aqueous solution. Environ Sci Technol. 2008;42(22):8492–7.

    Article  CAS  Google Scholar 

  17. Wang J, Sun Y, Miao H, Xu J, Feng J. Simultaneous removal of aqueous Cr(VI) and phenol by corona discharge plasma. Acta Sci Vet. 2012;32(10):2415–21.

    CAS  Google Scholar 

  18. Ke Z, Huang Q, Zhang H, Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas–solution interface. Environ Sci Technol. 2011;45(18):7841–7.

    Article  CAS  Google Scholar 

  19. Becker KH, Schoenbach KH, Eden JG. Microplasmas and applications. J Phys D Appl Phys. 2006;39(39):85–8.

    Google Scholar 

  20. El-Habachi A, Schoenbach KH. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Appl Phys Lett. 1998;73(7):885–887.

    Google Scholar 

  21. Sankaran RM, Giapis KP, Moselhy M, Schoenbach KH. Argon excimer emission from high-pressure microdischarges in metal capillaries. Appl Phys Lett. 2003;83(23):4728–30.

    Article  CAS  Google Scholar 

  22. Park SJ, Eden JG, Chen J, Liu C. Microdischarge devices with 10 or 30 μm square silicon cathode cavities: pd scaling and production of the XeO excimer. Appl Phys Lett. 2004;85(21):4869–71.

    Article  CAS  Google Scholar 

  23. Park SJ, Eden JG. 13–30 micron diameter microdischarge devices: atomic ion and molecular emission at above atmospheric pressures. Appl Phys Lett. 2002;81(22):4127–9.

    Article  CAS  Google Scholar 

  24. Kurunczia P, Abramzona N, Figus M, Becker K. Measurement of rotational temperatures in high-pressure microhollow cathode(MHC) and capillary plasma electrode(CPE) discharges. Acta Phys Slovaca. 2004;54(2):115–24.

    Google Scholar 

  25. Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, Jahnke T, Niemax K, Schmidt-Böckingocking H. Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy. Plasma Sources Sci T. 2002;11(4):476–83.

    Article  CAS  Google Scholar 

  26. Mariotti D, Sankaran RM. Perspectives on atmospheric-pressure plasmas for nanofabrication. J Phys D Appl Phys. 2011;44108(44):228–36.

    Google Scholar 

  27. Water quality—determination of chromium(6)–1.5 diphenylcarbahydrazide spectrophotometric method. GB7467–1987, China; 1987.

    Google Scholar 

  28. Gallard H, Laat JD. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000;34(12):3107–16.

    Article  CAS  Google Scholar 

  29. Das DP, Parida K, De BR. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. J Mol Catal A-Chem. 2006;245(1–2):217–24.

    Article  CAS  Google Scholar 

  30. Mohapatra P, Samantaray SK, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J Photoch Photobio A. 2005;170(2):189–94.

    Article  CAS  Google Scholar 

  31. Du CM, Shi TH, Sun YW, Zhuang XF. Decolorization of acid orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192–7.

    Article  CAS  Google Scholar 

  32. Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Res. 2004;38(12):2811–20.

    Article  CAS  Google Scholar 

  33. Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, Yu Z. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies. J Hazard Mater. 2010;181(1–3):801–8.

    Article  CAS  Google Scholar 

  34. Amonette JE, Rai D. Identification of noncrystalline (Fe, Cr)(OH)3 by infrared spectroscopy. Clays Clay Miner. 1990;38(2):129–36.

    Article  CAS  Google Scholar 

  35. Zecchina A, Coluccia S, Guglielminotti E, Ghiotti G. Infrared study of surface properties of alpha-chromia. I. preparation and adsorption of water, heavy water, and carbon monoxide. J Phys Chem. 1971;75(18):2774–83.

    Article  CAS  Google Scholar 

  36. Ratnasamy P, Leonard AJ. Structural evolution of chromia. J Phys Chem. 1972;76(13):1838–43.

    Article  CAS  Google Scholar 

  37. Huang XZ, Zhong XX, Lu Y, Li YS, Rider AE, Furman SA, Ostrikov K. Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology. 2013;24(9):793–9.

    Article  Google Scholar 

  38. Wang L, Liu Y. Enhancement of phenol degradation by electron acceptors in anodic contact glow discharge electrolysis. Plasma Chem Plasma P. 2012;32(4):715–722.

    Google Scholar 

  39. And PB, Arias C. A kinetic study of the chromium(VI)-hydrogen peroxide reaction. role of the diperoxochromate(VI) intermediates. J Phys Chem A. 1997;101(26):4726–4733.

    Google Scholar 

  40. Arroyo MG, Perez-Herranz V, Montanes MT, Garcia-Anton J, Guinon JL. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J Hazard Mater. 2009;169(1–3):1127–33.

    Article  CAS  Google Scholar 

  41. Yusof AM, Malek NA. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J Hazard Mater. 2009;162(2–3):1019–24.

    Article  CAS  Google Scholar 

  42. Cotton FA, Wilkinson G. Advanced inorganic chemistry. Canada: Wiley; 1980.

    Google Scholar 

  43. Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (∙OH/∙O) in aqueous solution. J Phys Chem Ref Data. 1988;17(2):513–886.

    Article  CAS  Google Scholar 

  44. Sahni M, Locke BR. Quantification of reductive species produced by high voltage electrical discharges in water. Plasma Process Polym. 2006;3(4–5):342–54.

    Article  CAS  Google Scholar 

  45. Wang X, Jin X, Zhou M, Chen Z, Deng K. Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge. Electrochim Acta. 2013;112(12):692–7.

    Article  CAS  Google Scholar 

  46. Hayashi D, Hoeben WFLM, Dooms G, Veldhuizen EMV, Rutgers W, Kroesen GMW. Influence of gaseous atmosphere on corona-induced degradation of aqueous phenol. J Phys D Appl Phys, 2000, 33(21): 2769–2774(6).

    Google Scholar 

  47. Yan JH, Bo Z, Li XD, Du CM, Cen KF, Chéron BG. Study of mechanism for hexane decomposition with gliding arc gas discharge. Plasma Chem Plasma P. 2007;27(2):115–126.

    Google Scholar 

  48. Rai D, Sass BM, Moore DA. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem. 1986;26(3):345–9.

    Article  Google Scholar 

  49. Testa JJ, Grela MA, Litter MI. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol. 2004;38(5):1589–94.

    Article  CAS  Google Scholar 

  50. Heidmann I, Calmano W. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep Purif Technol. 2008;61(1):15–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangMing Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press, Hangzhou and Springer Natue Singapore Pte Ltd.

About this chapter

Cite this chapter

Du, C., Yan, J. (2017). Reduction and Removal of Cr(VI) from Aqueous Solution by Microplasma. In: Plasma Remediation Technology for Environmental Protection. Advanced Topics in Science and Technology in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-3656-9_4

Download citation

Publish with us

Policies and ethics