Advertisement

Abiotic Stress Management in Fruit Crop Litchi chinensis

  • Garima Malik
  • Priyanka Deveshwar
Chapter

Abstract

Frequent variations in global climate patterns direct changes in soil-plant-atmosphere continuum. Abiotic stresses caused due to these changes are responsible for inducing various modifications at molecular and cellular level in plants that in turn cause irreversible damage to agricultural yields of several major fruit crops. Lychee is a delicious, juicy fruit packed with numerous health benefits. The lychee production on a commercial level in Southeast Asia is a source of livelihood for thousands of people. Being highly specific in its climatic prerequisite, lychee crop quality and yield is adversely affected by any alteration in the environmental factors causing serious economic loss for the growers. In the near future, this situation might become more critical due to scarcity of land and water resources and deterioration of growing conditions in many parts of the world. Thus, it is necessary to develop fruit crop varieties that are resilient to abiotic stresses to ensure nutritional and financial security to a large population of the world. With the development of new biotechnological tools such as genomics, transcriptomics, microarray, and next-generation sequencing, plant scientist can investigate molecular, physiological, and biochemical regulatory pathways activated in planta to cope with various abiotic stresses and use this information for genetic improvement of crop as well as the formation of new generation GMOs. In this chapter, we will focus on various abiotic stresses that interferes with lychee growth and development and affects its productivity as well as provide a detailed update on recent research which contributes to a better understanding of stress regulatory mechanism to combat abiotic stresses in lychee.

Keywords

Lychee/Litchi Abiotic stress Planta Fruit 

References

  1. Addicott FT (1982) Abscission. University of California Press, BerkeleyGoogle Scholar
  2. Agustí M, Almela V, Juan M, Alferez F, Tadeo FR, Zacarías L (2001) Histological and physiological characterization of rind breakdown of ‘Navelate’ sweet orange. Ann Bot 88(3):415–422. doi: 10.1006/anbo.2001.1482 CrossRefGoogle Scholar
  3. Akamine EK (1960) Preventing the darkening of fresh lychees prepared for transport. Technical Progress Report of Hawaii Agricultural Experimental Station, vol 127. University of HawaiiGoogle Scholar
  4. Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Mattoo AK (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68(2):453–456CrossRefPubMedPubMedCentralGoogle Scholar
  5. Apelbaum A, Goldlust A, Icekson I (1985) Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol 79(3):635–640CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aziz A, Brun O, Audran J-C (2001) Involvement of polyamines in the control of fruitlet physiological abscission in grapevine (Vitis vinifera). Physiol Plant 113(1):50–58. doi: 10.1034/j.1399-3054.2001.1130107.x CrossRefGoogle Scholar
  7. Banuelos GR, Argumedo R, Patel K, Ng V, Zhou F, Vellanoweth RL (2008) The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. Plant Sci 174(3):366–373. doi: 10.1016/j.plantsci.2007.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talon M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114(2):557–564CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berüter J, Droz P (1991) Studies on locating the signal for fruit abscission in the apple tree. Sci Hortic 46(3):201–214. doi: 10.1016/0304-4238(91)90043-X CrossRefGoogle Scholar
  10. Biyan Z, Huang X, Chen H, Shu W, Hu Z, Liu W, Xiang C, Zhang S (2013) Effects of ethylene on rudimentary leaf and panicle primordium in Litchi: anti-oxidants, hydrogen peroxide and nitric oxide. In: Acta Horticulturae, 2013. International Society for Horticultural Science (ISHS). Leuven, p 247–254. doi: 10.17660/ActaHortic.2013.975.27
  11. Bonghi C, Tonutti P, Ramina A (2000) Biochemical and molecular aspects of fruitlet abscission. Plant Growth Regul 31(1):35–42. doi: 10.1023/a:1006338210977 CrossRefGoogle Scholar
  12. Bose TK, Mitra SK (1990) Fruits: tropical and subtropical. Naya Prokash, CalcuttaGoogle Scholar
  13. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448. doi: 10.1126/science.218.4571.443 CrossRefPubMedGoogle Scholar
  14. Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4(9):361–366CrossRefPubMedGoogle Scholar
  15. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30CrossRefPubMedGoogle Scholar
  16. Chen HB, Huang HB (2005) Low temperature requirements for floral induction in lychee. Acta Hortic 665:195–202CrossRefGoogle Scholar
  17. Chen YZ, Wang YR (1989) Study on peroxidases in litchi pericarp. Acta Batanica Austro Sinica 5:47–52Google Scholar
  18. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326. doi: 10.1038/35030000 CrossRefPubMedGoogle Scholar
  19. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. doi: 10.1186/1471-2229-11-163 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cui Z, Zhou B, Zhang Z, Hu Z (2013) Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. S Afr J Bot 88:76–79. doi: 10.1016/j.sajb.2013.05.008 CrossRefGoogle Scholar
  21. Daher FB, Braybrook SA (2015) How to let go: pectin and plant cell adhesion. Front Plant Sci 6:523. doi: 10.3389/fpls.2015.00523 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dal Cin V, Boschetti A, Dorigoni A, Ramina A (2007) Benzylaminopurine application on two different apple cultivars (Malus domestica) displays new and unexpected fruitlet abscission features. Ann Bot 99(6):1195–1202. doi: 10.1093/aob/mcm062 CrossRefPubMedGoogle Scholar
  23. Damour G, Vandame M, Urban L (2008) Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis). J Plant Physiol 165(13):1370–1378. S0176–1617(07)00316–1 [pii], doi:  10.1016/j.jplph.2007.10.014
  24. Das DK, Prabhakar M, Kumari D, Kumari N (2016) Expression of SAMDC gene for enhancing the shelf life for improvement of fruit quality using biotechnological approaches into litchi (Litchi chinensis Sonn.) cultivars. Adv Biosci Biotechnol 7:300–310. doi: 10.4236/abb.2016.76028 CrossRefGoogle Scholar
  25. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93(12):6025–6030CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F (2013) ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. Plant Physiol 161(3):1486–1500. doi: 10.1104/pp.112.208199 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132(20):4563–4574. doi: 10.1242/dev.02012 CrossRefPubMedGoogle Scholar
  28. Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3,4-[(14)C]Methionine into spermidine in aged orange peel discs. Plant Physiol 69(2):385–388CrossRefPubMedPubMedCentralGoogle Scholar
  29. Goldschmidt EE, Koch KE (1996) Citrus. In: Zaminski E, Schaffer AA (eds) Photoassimilate distribution plants and crops source-sink relationships. Marcel Dekker, New York, pp 797–823Google Scholar
  30. Gómez-Cadenas A, Mehouachi J, Tadeo RF, Primo-Millo E, Talon M (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210(4):636–643. doi: 10.1007/s004250050054 CrossRefPubMedGoogle Scholar
  31. Guo Y (2013) Towards systems biological understanding of leaf senescence. Plant Mol Biol 82(6):519–528. doi: 10.1007/s11103-012-9974-2 CrossRefPubMedGoogle Scholar
  32. Huang HB, Chen HB (2005) A phase approach towards floral formation in lychee. Acta Hortic 665:185–194CrossRefGoogle Scholar
  33. Huang S, Hart H, Lee H, Wicker L (1990) Enzymatic and color changes during post-harvest storage of lychee fruit. J Food Sci 55(6):1762–1763. doi: 10.1111/j.1365-2621.1990.tb03623.x CrossRefGoogle Scholar
  34. Huang X, Wang HC, Li J, Yin J, Yuan W, Lu J, Huang HB (2005) An overview of calcium’s role in lychee fruit cracking. In: International Society for Horticultural Science (ISHS). Leuven, pp 231–240. doi: 10.17660/ActaHortic.2005.665.26
  35. Icekson I, Goldlust A, Apelbaum A (1985) Influence of Ethylene on S-adenosylmethionine Decarboxylase Activity in Etiolated Pea Seedlings. J Plant Physiol 119(4):335–345. doi: 10.1016/S0176-1617(85)80101-2 CrossRefGoogle Scholar
  36. Joshi G, Singh PK, Singh SK, Srivastava PC (2011) Effect of drip fertigation and mulching on water requirement, yield and economics of high density litchi. Progress Hortic 43(22):237–242Google Scholar
  37. Kakkar RK, Rai VK (1993) The international journal of plant biochemistry plant polyamines in flowering and fruit ripening. Phytochemistry 33(6):1281–1288. doi: 10.1016/0031-9422(93)85076-4 CrossRefGoogle Scholar
  38. Kaku T, Tabuchi A, Wakabayashi K, Hoson T (2004) Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls. Plant Cell Physiol 45(1):77–82CrossRefPubMedGoogle Scholar
  39. Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27(12):1459–1468. doi: 10.1111/j.1365-3040.2004.01251.x CrossRefGoogle Scholar
  40. Kaur-Sawhney R, Shih L-M, Flores HE, Galston AW (1982) Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol 69(2):405–410CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323(5917):1053–1057. doi: 10.1126/science.1166386 CrossRefPubMedGoogle Scholar
  42. Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ, Li JG (2012) Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. Int J Mol Sci 13(12):16084–16103. ijms131216084 [pii], doi: 10.3390/ijms131216084
  43. Lai B, Li X-J, Hu B, Qin Y-H, Huang X-M, Wang H-C, Hu G-B (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One 9(1):e86293. doi: 10.1371/journal.pone.0086293 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li C, Wang Y, Huang X, Li J, Wang H (2015a) An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Front Plant Sci 6:439. doi: 10.3389/fpls.2015.00439 PubMedPubMedCentralGoogle Scholar
  45. Li C, Wang Y, Ying P, Ma W, Li J (2015b) Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. Front Plant Sci 6. doi: 10.3389/fpls.2015.00502
  46. Li JG, Huang HB, Gao FF, Huang XM, Wang HC (2001) An overview of litchi fruit cracking. In: International Society for Horticultural Science (ISHS). Leuven pp 205–208. doi: 10.17660/ActaHortic.2001.558.28
  47. Li J, Huang X, Huang H (2003) Comparison of the activities of enzymes related to cell-Wa metabolism in pericarp between litchi cultivars susceptible and resistant to fruit cracking. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 29(2):141–146Google Scholar
  48. Li JG, Huang HB, Yuan RC, Gao FF (1996) Litchi fruit cracking in relation to fruit growth and water-uptake kinetics. J South China Agric Univ 13:129–135Google Scholar
  49. Li J, Liu S, Wang Z (2004) Changes in endogenous polyamine contents during fruit development of litchi ({\sl Litchi chinensis}). Plant Physiol Commun 40(2):153–156Google Scholar
  50. Li C, Wang Y, Huang X, Li J, Wang H (2013) De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics 14:552. 1471–2164–14-552 [pii], doi: 10.1186/1471-2164-14-552
  51. Li WC, Wu JY, Zhang HN, Shi SY, Liu LQ, Shu B, Liang QZ, Xie JH, Wei YZ (2014) De novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn. Int J Mol Sci 15(10):17667–17685. doi: 10.3390/ijms151017667 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu J, Jia C, Dong F, Wang J, Zhang J, Xu Y, Xu B, Jin Z (2013a) Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress. Planta 237(4):1025–1036. doi: 10.1007/s00425-012-1820-x CrossRefPubMedGoogle Scholar
  53. Liu WW, Kim HJ, Chen HB, Lu XY, Zhou BY (2013b) Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. Plant Cell Rep 32(9):1361–1372. doi: 10.1007/s00299-013-1448-8 CrossRefPubMedGoogle Scholar
  54. Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinensis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15:805. doi:1471–2164–15-805 [pii],10.1186/1471–2164–15-805Google Scholar
  55. Lu W, Wang Y, Jiang Y, Li J, Liu H, Duan X, Song L (2006) Differential expression of litchi XET genes in relation to fruit growth. Plant Physiol Biochem 44(11–12):707–713. doi: 10.1016/j.plaphy.2006.09.020 CrossRefPubMedGoogle Scholar
  56. Mali SS, Das B, Bhatnagar PR (2015) Effect of water application method and deficit irrigation on yield, quality and irrigation water use efficiency of litchi (Litchi chinensis Sonn.) cv Shahi. International Journal of Irrigation and Water ManagementGoogle Scholar
  57. McArtney S, White M, Latter I, Campbell J (2004) Individual and combined effects of shading and thinning chemicals on abscission and dry-matter accumulation of ‘Royal Gala’ apple fruit. J Hortic Sci Biotechnol 79(3):441–448. doi: 10.1080/14620316.2004.11511787 CrossRefGoogle Scholar
  58. Measham PF, Gracie AJ, Wilson SJ, Bound SA (2010) Vascular flow of water induces side cracking in sweet cherry (Prunus avium L.). Adv Hortic Sci 24(4):243–248Google Scholar
  59. Mehouachi J, Serna D, Zaragoza S, Agusti M, Talon M, Primo-Millo E (1995) Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci 107(2):189–197. doi: 10.1016/0168-9452(95)04111-7 CrossRefGoogle Scholar
  60. Menzel CM (1985) Propagation of lychee: A review. Sci Hortic 25(1):31–48. doi: 10.1016/0304-4238(85)90074-3 CrossRefGoogle Scholar
  61. Menzel CM (1991) Litchi chinensis Sonn. In: Varheij EWM, Coronel RE (eds) Plant resources of South-East Asia, vol 2. Wageningen, Edible fruits and nuts. Pudoc, pp 191–195Google Scholar
  62. Menzel C (2005) Photosynthesis and Productivity. In: Menzel C, Waite G (eds) Litchi and Longan: botany. CABI, Production and Uses, pp 153–182CrossRefGoogle Scholar
  63. Menzel CM, Simpson DX (1988) Effect of temperature on growth and flowering of litchi (Litchi chinensis Sonn.) cultivars. J Hortic Sci 63:349–360CrossRefGoogle Scholar
  64. Mitra SK, Pathak PK (2010) Litchi production in the Asia-Pacific Region. In: International Society for Horticultural Science (ISHS). Leuven, pp 29–36. doi: 10.17660/ActaHortic.2010.863.1
  65. Mitra SK, Pereira LS, Pathak PK, Majumdar D (2005) Fruit abscission pattern of lychee cultivars. In: International Society for Horticultural Science (ISHS). Leuven, pp 215–218. doi: 10.17660/ActaHortic.2005.665.24
  66. Morandi B, Zibordi M, Losciale P, Manfrini L, Pierpaoli E, Grappadelli LC (2011) Shading decreases the growth rate of young apple fruit by reducing their phloem import. Sci Hortic 127(3):347–352. doi: 10.1016/j.scienta.2010.11.002 CrossRefGoogle Scholar
  67. Moss GI, Steer BT, Kriedemann PE (1972) The regulatory role of inflorescence leaves in fruit-setting by sweet orange (Citrus sinensis). Physiol Plant 27(3):432–438. doi: 10.1111/j.1399-3054.1972.tb03639.x CrossRefGoogle Scholar
  68. Nakata S, Suehisa R (1969) Growth and development of Litchi chinensis as affected by soil-moisture stress. Am J Bot 56(10):1121–1126. doi: 10.2307/2440772 CrossRefGoogle Scholar
  69. Nartvaranant P (2015) Endogenous hormonal status in Pummelo fruitlets cultivar Thong Dee: relationship with pre-harvest fruit drop. Songklanakarin J Sci Technol 37(5):539–544Google Scholar
  70. Neog M, Saikia L (2010) Control of post-harvest pericarp browning of litchi (Litchi chinensis Sonn). J Food Sci Technol 47(1):100–104. doi: 10.1007/s13197-010-0001-9 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nip WK (1988) Handling and preservation of lychee (Litchi chinensis Sonn.) with emphasis on color relation. Trop Sci 28:5–11Google Scholar
  72. Nzima MDS, Martin GC, Nishijima C (1999) Effect of fall defoliation and spring shading on shoot carbohydrate and growth parameters among individual branches of alternate bearing `Kerman’ Pistachio trees. J Am Soc Hortic Sci 124(1):52–60Google Scholar
  73. Pareek S (2016) Nutritional and biochemical composition of lychee (Litchi chinensis Sonn.) cultivars. In: Simmonds M, Preedy V (eds) Nutritional composition of fruit cultivars. Academic Press, San Diego, pp 395–418. doi: 10.1016/B978-0-12-408117-8.00017-9 Google Scholar
  74. Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A 106(52):22540–22545. doi: 10.1073/pnas.0911967106 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Peng J, Tang X, Feng H (2004) Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomici). Sci Hortic 101(4):407–416. doi: 10.1016/j.scienta.2003.11.012 CrossRefGoogle Scholar
  76. Peng G, Wu J, Lu W, Li J (2013) A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission. Sci Hortic 150:244–250. doi: 10.1016/j.scienta.2012.10.029 CrossRefGoogle Scholar
  77. Powell AA, Krezdorn AH (1977) Influence of fruit setting treatment on translocation of 14C-metabolites in citrus during flowering and fruiting. J Am Soc Hortic Sci 102:709–714Google Scholar
  78. Rab A, Haq IU (2012) Irrigation intervals affect physicochemical quality attributes and skin cracking in litchi fruit. Turk J Agric For 36(5):553–564Google Scholar
  79. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141(2):357–366. doi: 10.1104/pp.106.079129 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sarin NB, Prasad US, Kumar M, Jain SM (2009) Litchi breeding for genetic improvement. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: Tropical species. Springer New York, New York, pp 217–245. doi: 10.1007/978-0-387-71201-7_7 CrossRefGoogle Scholar
  81. Sierla M, Rahikainen M, Salojarvi J, Kangasjarvi J, Kangasjarvi S (2013) Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxid Redox Signal 18(16):2220–2239. doi: 10.1089/ars.2012.5016 CrossRefPubMedGoogle Scholar
  82. Simmon G (2006) Review on rain induced fruit cracking of sweet cherries (Prunus aviuml.), its causes and the possibilities of prevention. Int J Hortic Sci 12(3):27–35Google Scholar
  83. Sipes DL, Einset JW (1983) Cytokinin stimulation of abscission in lemon pistil explants. J Plant Growth Regul 2(1):73–80. doi: 10.1007/bf02042235 CrossRefGoogle Scholar
  84. Stern RA, Kigel J, Tomer E, Gazit S (1995) `Mauritius’ lychee fruit development and reduced abscission after treatment with the auxin 2,4,5-TP. J Am Soc Hortic Sci 120(1):65–70Google Scholar
  85. Stern RA, Meron M, Naor A, Wallach R, Bravdo B, Gazit S (1998) Effect of fall irrigation level in `Mauritius’ and `Floridian’ lychee on soil and plant water status, flowering intensity, and yield. J Am Soc Hortic Sci 123(1):150–155Google Scholar
  86. Subhadrabandhu S, Stern AS (2005) Taxonomy, botany and plant development. In: Menzel C, Waite G (eds) Litchi and Longan: botany, production and uses. CABI, Cambridge, MA, pp 25–34CrossRefGoogle Scholar
  87. Talon M, Tadeo FR, Ben-Cheikh W, Gomez-Cadenas A, Mehouachi J, Pérez-Botella J, Primo-Millo E (1998) Hormonal regulation of fruit set and abscission in Citrus: classical concepts and new evidence. In: International Society for Horticultural Science (ISHS), Leuven, pp 209–218. doi: 10.17660/ActaHortic.1998.463.24
  88. Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytol 151(2):323–340. doi: 10.1046/j.0028-646x.2001.00194.x CrossRefGoogle Scholar
  89. Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor. PLoS One 10(7):e0131567. doi: 10.1371/journal.pone.0131567 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tuteja N, Gill S (2016) Abiotic stress response in plants. WileyGoogle Scholar
  91. Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32(7):1099–1109. doi: 10.1007/s00299-013-1421-6 CrossRefPubMedGoogle Scholar
  92. Wei Y-Z, Hu F-C, Hu G-B, Li X-J, Huang X-M, Wang H-C (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One 6(4):e19455. doi: 10.1371/journal.pone.0019455 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weigel D, Meyerowitz EM (1993) Activation of floral homeotic genes in Arabidopsis. Science 261(5129):1723–1726. doi: 10.1126/science.261.5129.1723 CrossRefPubMedGoogle Scholar
  94. Xiang X, Qiu YP, Zhang ZW (1995) Endogenous hormones in the fruit of Litchi chinensis cv. Nuomici relating to fruit abscission. J Fruit Sci 12:88–92Google Scholar
  95. Yang CY, Chen YC, Jauh GY, Wang CS (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139(2):836–846. doi: 10.1104/pp.105.065458 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yao F, Zhu H, Yi C, Qu H, Jiang Y (2015) MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life. BMC Plant Biol 15:181. doi: 10.1186/s12870-015-0509-2 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yong W, Wangjin L, Jianguo L, Yueming J (2006) Differential expression of two expansin genes in developing fruit of cracking-susceptible and-resistant litchi cultivars. J Am Soc Hortic Sci 131(1):118–121Google Scholar
  98. Yuan R, Huang H (1988) Litchi fruit abscission: its patterns, effect of shading and relation to endogenous abscisic acid. Sci Hortic 36(3):281–292. doi: 10.1016/0304-4238(88)90063-5 CrossRefGoogle Scholar
  99. Yuan R, Huang H (1991) Effect of NAA, NAA plus nucleotides on fruit set of lychee. Austral Lychee Yearbook 1:46–50Google Scholar
  100. Yuan RC, Huang HB (1992) Improvement of fruit-set in Litchi chinensis Sonn. Through regulation of source-sink relationships. J S China Agric Univ 13:136–141Google Scholar
  101. Yuan RC, Huang HB (1993) Regulation of root and shoot growth and fruit drop of young litchi trees by trunk girdling in view of source-sink relationship. J Fruit Sci 10:195–198Google Scholar
  102. Yuan W, Huang X, Wang H, Li J, Chen H, Yin J (2009) Seasonal changes in carbon nutrition reserve in Nuomici litchi trees and its relation to fruit load. Acta Horticulturae Sinica 36(11):1568–1574Google Scholar
  103. Zhang ZW (1997) China, the native home of litchi. In: Zhang ZW, Yuan PY, Wang BQ, Qiu YP, Li JS (eds) Litchi pictorial narration of cultivation. China Books & Periodicals, Incorporated, Guangdong Sheng nong ye ke xue yuan. Pomology Research Institute, Guangdong, pp 12–17Google Scholar
  104. Zhou XJ, Yan HD, Bai HH, Yao WD (1999) Carbohydrate and endohormone status in relation to fruit set as influenced by trunk spiral girdling of young litchi trees. Acta Hortic Sinica 26:77–80. doi:10.3321/j.issn:0513- 353X.1999.02.002Google Scholar
  105. Zhou B, Chen H, Huang X, Li N, Hu Z, Gao Z, Lu Y (2008) Rudimentary leaf abortion with the development of panicle in litchi: changes in ultrastructure, anti-oxidant enzymes and phytohormones. Sci Hortic 117(3):288–296. doi:http://dx.doi.org/10.1016/j.scienta.2008.04.004 CrossRefGoogle Scholar
  106. Zhou B, Li N, Zhang Z, Huang X, Chen H, Hu Z, Pang X, Liu W, Lu Y (2012) Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. Biol Plant 56(2):321–329. doi: 10.1007/s10535-012-0093-3 CrossRefGoogle Scholar
  107. Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11:138. doi: 10.1186/1471-2229-11-138 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29(6):1049–1060CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Gargi CollegeUniversity of DelhiDelhiIndia
  2. 2.Sri Aurobindo CollegeUniversity of DelhiDelhiIndia

Personalised recommendations