Skip to main content

Biotechnological Advances in Lychee (Litchi chinensis) and Their Future Implication in Improvement of Crop

  • Chapter
  • First Online:
Book cover The Lychee Biotechnology

Abstract

Lychee (Litchi chinensis L.) belongs to family Sapindaceae and cultivated in tropical and subtropical countries. The fruit is an excellent source of nutrients, i.e., vitamin C, and polyphenols, and other parts of plants, i.e., leaves and stem, have huge medicinal value and are used to cure various ailments. Litchi chinensis is facing several agronomic and horticultural problems such as susceptibility to many pathogens damaging preharvest and postharvest fruits, uneven fruit growth, short shelf life of fruits, high seed content, and high yielding variety. There is limited scope of conventional breeding techniques in improvement of lychee due to self-incompatibility, to long juvenile period, and to heterozygous nature. Biotechnology can complement conventional breeding and enhance the lychee improvement programs. Studies involving in vitro culture, screening, micropropagation, embryo rescue, genetic transformation, marker-assisted characterization and DNA fingerprinting, and QTL are underway at different centers worldwide for the improvement of lychee. In vitro culture, callus induction, cell suspension culture, and somatic embryogenesis of several different genotypes have been achieved. Protocols for protoplast culture and somatic hybridization of protoplast of lychee and longan have also been achieved. Isozyme markers and DNA markers offer means for gaining more insights in the genetics of the crops and identifying genes that could lead to accelerate lychee improvements. Genetic transformation using Agrobacterium tumefaciens and physical and chemical methods has been reported. Genes that are involved with fruit ripening, disease resistant, and enhancement of shelf life have been cloned, and there have been attempts to deliver these genes into plants. Transgenic lychee was developed by introducing the SAMDC genes from Datura stramonium responsible to increase the shelf life. Studies on genetic diversity of lychee cultivars by molecular markers are found to be effective in comparison to morphological markers. The purpose of this review is to focus upon contemporary information on biotechnological advances made in lychee by overcoming the problems encountered during in vitro propagation, generation of disease resistant, and enhanced shelf life cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin MN, Razzaque MA (1992) Induction of somatic embryogenesis in the cultures of zygotic embryos of lychee. Bangladesh J Bot 24:25–29

    Google Scholar 

  • Amin MN, Razzaque MA (1995) Induction of somatic embryogenesis in the cultures of zygotic embryos of lychee. Bangladesh J Bot 24:25–29

    Google Scholar 

  • Anderson JM, Aitken EAB, Dann EK, Coates LM (2012) Morphological and molecular diversity of Colletotrichum spp. causing pepper spot and anthracnose of lychee (Litchi chinensis) in Australia. Plant Pathol 62(2):279–288

    Article  CAS  Google Scholar 

  • Anon (1991) Tissue culture of lychee (Litchi chinensis Sonn.) CSFRI Inf Bull 229:1–2

    Google Scholar 

  • Anuntalabhochai R, Chundet R, Chiangda J, Apavatjrut P (2002) Genetic diversity within lychee based on RAPD analysis. Acta Hortic 575:253–259

    Article  CAS  Google Scholar 

  • Aradhya MK, Zee FT, Manshardt RM (1995) Isozyme variation in lychee (Litchi chinensis Sonn). Sci Hortic 63:21–35

    Article  CAS  Google Scholar 

  • Babita S, Kumar R (2008) Feed your litchi orchard properly. Indian Hortic 53(3):18–20

    Google Scholar 

  • Basu S, Haldar N, Bhattacharya S, Biswas S, Biswas M (2012) Hepatoprotective activity of litchi chinensis leaves against paracetamol-induced liver damage in rats. Am-Euras J Sci Res 7:77–81

    Google Scholar 

  • Benson EE (2000) In vitro recalcitrance: an introduction. Special symposium: in vitro plant recalcitrance. In Vitro Cell Dev Biol Plant 36:141–148

    Article  Google Scholar 

  • Bhoopat L, Srichairatanakool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T (2011) Hepatoprotective effects of Litchi (Litchi chinensis Sonn.): a combination of anti-oxidant and anti-apoptotic activities. J Ethnopharmacol 136:55–66

    Article  CAS  PubMed  Google Scholar 

  • Butani DK (1977) Pests of litchi in India and their control. Fruits 32:269–273

    Google Scholar 

  • Castellain RC, Gesser M, Tonini F, Schulte RV, Demessiano KZ, Wolff FR et al (2014) Chemical composition, anti-oxidant and antinociceptive properties of Litchi chinensis leaves. J Pharm Pharmacol 66:1796–1807

    Article  CAS  PubMed  Google Scholar 

  • Chadha KL, Rajpoot MS (1969) Studies on floral biology, fruit set, and its retention and quality of some litchi varieties. Indian J Hortic 26:124–129

    Google Scholar 

  • Chandra R, Padaria JC (1999) Litchi shoot bud culture for micropropagation. J Appl Hort Lucknow 1(1):38–40

    Google Scholar 

  • Chandra B, Palni LMS, Nandi SK (2004) Micropropagation of Picrorhiza kurrooa Royle ex Benth., an endangered alpine herb, using cotyledonary node and shoot tip explants. Phytomorphology 54(3 & 4):303–316

    Google Scholar 

  • Chang KP (1970) A Study of Anoplophora macularia, a serious insect pest of litchi. Taiwan Agric Q 6:133–143

    Google Scholar 

  • Chang JC, Lin TS (2008) Fruit yield and quality as related to flushes of bearing shoots in litchi. J Am Soc Hortic Sci 133:284–289

    Google Scholar 

  • Chang Y, Yang D, Chiu C, Lin Y, Chen J, Chen Y (2013) Antioxidative and anti-inflammatory effects of polyphenol-rich litchi (Litchi chinensis Sonn.)-flower-water extract on livers of high-fat-diet fed hamsters. J Funct Foods 5:44–52

    Article  CAS  Google Scholar 

  • Chapman KR (1984) Sapindaceae. In: Page PE (ed) Tropical tree fruits for Australia. Queensland Department of Primary Industry, Queensland, pp 179–191

    Google Scholar 

  • Chauhan S, Kaur N, Kishore L, Singh R (2014) Pharmacological evaluation of anti-inflammatory and analgesic potential of Litchi chinensis. Int J Pharm Pharm Sci 6:116–119

    Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25(1):21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen IZ, Cheng CY (1996) Effect of root temperature on flowering, root growth and leaf mineral nutrients and carbohydrate content of mango (Mangifera indica L.) J Taiwan Soc Hortic Sci 42:131–141

    Google Scholar 

  • Chen HB, Huang HB (2001) China litchi industry: development, achievement and problems. Acta Hortic 558:31–39

    Article  Google Scholar 

  • Chen MC, Weng SW (2000) Study on morphology and germination of pollen in litchi. Hortic NCHU 25:27–41

    Google Scholar 

  • Chen SP, Yao CM (2001) Occurrence and control of main pests on litchi in Guangzhou. Guangdong Agric. Sci. 4:37–39 (in Chinese)

    CAS  Google Scholar 

  • Chen W, Wu Z, Ji Z, Su M (2001) Postharvest research and handling of litchi in China – a review. Acta Hortic 558:321–329

    Article  Google Scholar 

  • Chen J, Lin H, Hu M (2005) Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol 55(2):159–169

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Deng SS, Zhang X, Wei SX, Gao AP, Wang JB et al (2004) RAPD analysis of genetic relationship among partial litchi germplasms in Hainan Island. Acta Hortic Sin 31:224–226

    Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of miRNA by stem-loop RT-PCR. Nucleic Acids Res 33:e179. doi:10.1093/nar/gni178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JN, Zeng XN, Chen BX, Dong YZ, Lu H (2010) Occurrence and control of geometrid moth in litchi orchard. Chin J Trop Crops 31:1564–1570

    Google Scholar 

  • Cheng YH (2003) Effect of girdling on flower differentiation of Litchi (Litchi chinensis Sonn.). II. Effect of root temperature on development of Embryo Sac of Litchi (Litchi chinensis Sonn.). M.S. thesis, Department of Horticulture, National Taiwan University, Taipei, Taiwan

    Google Scholar 

  • Chin HF, Hor YL, Lassim MBM (1984) Identification of recalcitrant seeds. Seed Sci Technol 12:429–436

    Google Scholar 

  • Chrispeels MJ, Grossi MF, Higgins TJV (1998) Genetic engineering with alpha amylase inhibitor seeds resistant to bruchids. Seed Sci Res 8:257–263

    Article  CAS  Google Scholar 

  • Chundet R, Cutler RW, Tasanon M, Anuntalabhochai S (2007) Hybrid detection in lychee (Litchi chinensis Sonn.) cultivars using HAT-RAPD markers. Sci Asia 33:307–311

    Article  CAS  Google Scholar 

  • Coates LM, Zhou E, Sittigul C (2005) Diseases. In: Menzel CM, Waite GK (eds) Litchi and longan: botany, production and uses. CABI Publishing, Wallingford, pp 261–272

    Chapter  Google Scholar 

  • Das CS, Chowdhary KR (1958) Floral biology of litchi (Litchi chinensis Sonn.) South Indian Hortic 6:17–622

    Google Scholar 

  • Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana). Curr Trends Biotenol Pharm 41:820–833

    Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • Das DK, Shiva Prakash N, Sarin NB (1996) Regeneration and Transformation of Litchi (Litchi chinensis Sonn.). In Vitro Cell Dev Biol Plant 32:63A

    Article  Google Scholar 

  • Das DK, Shiva Prakash N, Sarin NB (1999a) Multiple shoot induction and plant regeneration in litchi (Litchi chinensis Sonn.). Plant Cell Rep 18:691–695

    Article  CAS  Google Scholar 

  • Das DK, Prakash NS, Sarin NB, et al. (1999b) Multiple-shoot induction in Litchi chinensis – a tropical tree species. In: Proceedings of Plant tissue culture and biotechnology: emerging trends, Hyderabad, India, 29–31 January, 1997, pp 166–170

    Google Scholar 

  • DeJager ES, Wehner FC, Korsten L (2003) Fungal post-harvest pathogens of litchi fruit in South Africa. SA Litchi Growers’ Assoc Year B 15:24–23

    Google Scholar 

  • Degani C, Beiles A, El-Bastri R, Goren M, Gazit S (1995) Identifying lychee cultivars by isozyme analysis. J Am Soc Hortic Sci 120:307–312

    CAS  Google Scholar 

  • Degani C, Deng J, Beiles A, El-Batsri R, Goren M, Gazit S (2003) Identifying lychee cultivars and their genetic relationships using intersimple sequence repeat markers. J Am Soc Hortic Sci 128:838–845

    CAS  Google Scholar 

  • Deng CJ (2005) Studies on high frequency somatic embryogenesis and regeneration culture in litchi. Master’s thesis of Hunan Agricultural University, Changsha, Hunan, China.

    Google Scholar 

  • Deng Chao-jun, YI Gan-jun, Zeng Ji-wu, Zhang Qiu-ming, Liu Wei-guo (2007) Application of orthogonal experiment on induction of somatic embryogenesis in Litchi. Fujian Fruits 2007-02

    Google Scholar 

  • Ding XD, Lu LX, Chen XJ, Guan X (2000) Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J Trop Subtrop Bot 8:49–54

    Google Scholar 

  • Ding XD, Lu LX, Chen XJ (2001) Segregation patterns of RAPD markers in an F1 population of Litchi chinensis Sonn. Acta Hortic 558:167–172

    Article  CAS  Google Scholar 

  • Dodd JC, Prusky D, Jeffris P (1998) Fruits diseases. In: Litz RE (ed) The mango-botany, production and uses. CAB International, Wallingford/Oxon, pp 257–280

    Google Scholar 

  • Duvenhage JA (1993) Control of post-harvest decay and browning of litchi fruit by sodium metabisulphite and low pH dips. SA Litchi Growers’ Assoc Year B 5:31–32

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol 33:130–137

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Tang DY (1983) Induction of pollen plants of Litchi trees (Litchi chinensis Sonn.) Acta Genet Sin 10:369–374

    Google Scholar 

  • Fu LF, Tang TY (1983) Plantlets formed from litchi pollen. Plant Physiol Commun Zhiwu Shenglixue Tongxun No.2, 28–29

    Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • Ghosh B, Mitra SK, Sanyal D (2001) Litchi cultivars of West Bengal, India. Acta Hortic 558:107–114

    Article  Google Scholar 

  • Giri CC, Shyankumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an Overview. Trees 18:115–135

    Article  Google Scholar 

  • Grosser JW, Gmitter FG Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Gupta D, Bhatia R, Sharma NK, Chandel JS, Sharma R (1997) Incidence and management of red rust of litchi in lower hills of Himachal Pradesh. Pest Manag Hortic Ecosyst 3:70–74

    Google Scholar 

  • Guo Y-Q, Lai Z-X, Lü L-X (2007) Cryopreservation of embryogenic calli by vitrification and plant regeneration via somatic embryogenesis in litchi. J Fujian Agric Forestry Uni Nat Sci Edn 2007–01

    Google Scholar 

  • Guo SY, Peng HX, He XH, Ding F, Li HL, Qin XQ, Xu N (2014) Callus induction from different explants of litchi. Southwest China J Agric Sci 27(2):748–753

    Google Scholar 

  • Hanson J (1984) The storage of seeds of recalcitrant tree fruits. In: Allen G (ed) Crop genetic resources: conservation and evaluation. Unwin, London, pp 53–62

    Google Scholar 

  • Hamilton RA, Yee W (1970) Lychee cultivars in Hawaii. Proc Trop Am Soc Hortic Sci 14:7–12

    Google Scholar 

  • He DP (2001) An overview of integrated management of insect pests in litchi orchards of Guangdong. Acta Hortic 558:401

    Article  Google Scholar 

  • Hieke S, Menzel CM, Doogan VJ, Lüdders P (2002) The relationship between fruit and leaf growth in lychee (Litchi chinensis Sonn.) J Hortic Sci Biotechnol 77:320–325

    Article  Google Scholar 

  • Hieke S, Menzel CM, Doogan VJ, Lüdders P (2002) The relationship between yield and assimilate supply in lychee (Litchi chinensis Sonn.) J Hortic Sci Biotechnol 77:326–332

    Article  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Holcroft DM, Mitcham EJ (1996) Postharvest physiology of litchi: a review. Postharvest Biol Technol 9:265–281

    Article  CAS  Google Scholar 

  • Hoppe S, Neidhart S, Zunker K, Hutasingh P, Carle R (2006) The influences of cultivar and thermal processing on the allergenic potency of lychees (Litchi chinensis SONN.). Food Chem 96(2):209–219

    Article  CAS  Google Scholar 

  • Huang ZZ, You KZ (1990) Primary study on the litchi shoots induction. Guangdong Agric Sci 3:27–29

    Google Scholar 

  • Huang X, Zeng L, Huang HB (2005a) Lychee and longan production in China. Acta Hortic 665:27–36

    Article  Google Scholar 

  • Huang YZ, Yang CJ, Jiang SH (2005b) The preliminary analysis on the geographical division of litchi pest in China. J Cent S Forest Univ 25:78–80 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Hwang JY, Lin JT, Liu SC, Hu CC, Shyu YS, Yan DJ (2013) Protective role of litchi (Litchi chinensis Sonn.) flower extract against cadmium- and lead-induced cytotoxicity and transforming growth factor b1-stimulated expression of smooth muscle a-actin estimated with rat liver cell lines. J Funct Foods 5:698–705

    Article  CAS  Google Scholar 

  • Ichinose T, Musyoka TM, Watanabe K, Kobayashi N (2013) Evaluation of anti-viral activity of Oligonol, an extract of Litchi chinensis, against betanodavirus. Drug Discov Ther 7:254–260

    Article  CAS  PubMed  Google Scholar 

  • Irene PR, Babu DJ, Rao NV, Sheikh RA (2012) Nootropic activity of fruit extracts of Litchi chinensis Sonn (Sapindaceae). Int J Phar Tech 4:4795–4804

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants. The GUS gene fusion system. Plant Mol Biol Report 5:387–405. http://dx.doi.org/10.1007/BF02667740

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ et al (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YM, Yao LH, Lichter A, Li JR (2002) Postharvest biology and technology of litchi fruit. Food. Agric Environ 1:76–81

    Google Scholar 

  • Jiang Y, Duan X, Joyce D, Zhang Z, Li J (2004) Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem 88:443–446

    Article  CAS  Google Scholar 

  • Johnson GI, Sangchote S (1994) Control of post-harvest diseases of tropical fruits: challenges for the 21st century. In: Champ BR, Highley E, Johnson GI (eds) Post-harvest handling of tropical fruit. Australian Centre for International Agricultural Research, Canberra, pp 140–161

    Google Scholar 

  • Johnson GI, Cooke AW, Mead AJ, Wells LA (1991) Stem end rot of mango in Australia: causes and control. Acta Hortic 291:288–295

    Article  Google Scholar 

  • Kantharanjah AS, Mc Conchie CA, Dodd WA (1992) In vitro embryo culture and induction of multiple shoots in lychee. Ann Bot 70:153–156

    Article  Google Scholar 

  • Kantharajah AS, McConchie CA, Dodd WA (1992) In vitro embryo culture and induction of multiple shoots in lychee (Litchi chinensis Sonn.). Ann Bot 70(2):153–156

    Article  CAS  Google Scholar 

  • Khan MA, Ahmad I (2005) Multiple shoot induction and plant regeneration in Litchi (Litchi chinensis Sonn.). Int J Agric Biol

    Google Scholar 

  • Kong F, Zhang M, Liao S, Yu S, Chi J, Wei Z (2010) Anti-oxidant activity of polysaccharide-enriched fractions extracted from pulp tissue of litchi Chinensis sonn. Molecules 15:2152–2165

    Article  CAS  PubMed  Google Scholar 

  • Krishna H (2006) Studies on in vitro propagation of mango (Mangifera indica L.). Ph. D. thesis, I.A.R.I.

    Google Scholar 

  • Krishna H, Singh S (2007) Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement - a review. Biotechnol Adv 25:223–243

    Article  CAS  PubMed  Google Scholar 

  • Kuang ZS, Zhou LN, Ma XJ, Chen JQ, Cao J (1996) Study on the types of embryoid in tissue culture on Litchi chinensis Sonn. J Fruit Sci 13:25–28

    Google Scholar 

  • Kumar M (2006) Mass scale propagation of (Litchi chinensis Sonn.) through in vitro Technoques. Ph.D. Thesis, Bhagalpur University, Bhagalpur

    Google Scholar 

  • Kumari-Singh A, Prasad OS (1991) Dehydration pattern and viability loss in seeds of two cultivars of litchi (Litchi chinensis Sonn.). Seed Res 19:41–43

    Google Scholar 

  • Kumar V, Kumar G, Sharma PD (2012) Osmotic dehydration of litchi pulp as a pretreatment for drying processes. Agric Eng Int CIGR J 14(3):146–151

    Google Scholar 

  • Lai ZX, Chen ZG (2001) Electrofusion of protoplasts between longan and litchi. J Fujian Agric Uni 30(3):347–352

    Google Scholar 

  • Lai ZX, Sang QL (2003) Optimization of somatic embryogenesis system from embryogenic callus and plant regeneration from transformed hpt-resistant calli of litchi (Litchi chinensis Sonn.). Chin J App Environ Biol 9(2):131–136

    CAS  Google Scholar 

  • Lai Z, Chen C, Zheng L, Chen Z (2000) Somatic embryogenesis in longan (Dimocarpus longan Lour.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 415–431

    Chapter  Google Scholar 

  • Lai ZX, Sang QL, Pan DM (2002) Establishment of transgenic system of embryogenic callus via particle bombardment in litchi, J Fujian Agric Uni Nat Sci, 2002–03

    Google Scholar 

  • Lai B, Li XJ, Hu B, Qin YH, Huang XM, Wang HC, Hu GB (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE 9:e86293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KT (1992) The study of In vitro Litchi (Litchi chinensis Sonn.) Anther, pollen morphology and pollen germination characteristics. M.S. Thesis. Department of Horticulture, National Taiwan University, Taipei, Taiwan

    Google Scholar 

  • Lee SR (2004) The enabling technology of the flowering and fruit seeting of ‘YuHer-Pao’ Litchi (Litchi chinensis Sonn.). Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan

    Google Scholar 

  • Lee SR (2006) Flowering and Fruit Set in ‘Yu-Her-Pao’ Litchi (Litchi chinensis Sonn.) in Southern Taiwan. Res Bull KDARES 17:9–19

    Google Scholar 

  • Lee HS, Wicker L (1991) Quantitative changes in anthocyanin pigments of lychee fruit during refrigerated storage. Food Chem 40:263–270

    Article  CAS  Google Scholar 

  • Lee SJ, Park WH, Park SD, Moon HI (2009) Aldose reductase inhibitors from Litchi chinensis Sonn. J Enzyme Inhib Med Chem 24:957–959

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hoch G, Körner C (2002) Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees 16:331–337

    Article  CAS  Google Scholar 

  • Li M, Zheng X (2004) Research progress of regulatory mechanism of flowering and fruit setting in Litchi and its Germplasm analysis. Chin J Trop Agric:20–24

    Google Scholar 

  • Li XY, Chen WX, Liu AY (2006) Effects of Colletotrichum gloeosporioides infection on physiological and biochemical changes of litchi fruit. Subtrop Plant Sci 1:1–4

    Google Scholar 

  • Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY (2010) Purple canola: Arabidopsis PAP1 increases anti-oxidants and phenolics in Brassica napus leaves. J Agric Food Chem 58:1639–1645. doi:10.1021/jf903527y

    Article  CAS  PubMed  Google Scholar 

  • Liao YW, Ma SS (1998) Adventitious embryogenesis of Litchi chinensis. J Chin Soc Hortic Sci 44(1):29–40

    Google Scholar 

  • Lin MW (1994) Studies on the preharvest fruit dropping of litchi cv. Yu-Her-Pau. In: Lin HS, Chang LR (eds) Proceeding of a symposium on The Pracical Aspects of Some Economically Fruits in Taiwan. Taichung District Agriculture Improvement Station, Taichung, pp 99–107

    Google Scholar 

  • Lin S, Yang B, Chen F, Jiang G, Li Q, Duan X et al (2012) Enhanced DPPH radical scavenging activity and DNA protection effect of litchi pericarp extract by Aspergillus awamori bioconversion. Chem Cent J 6:108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotechnol 11:416–425

    Article  CAS  PubMed  Google Scholar 

  • Litz RE, Raharjo SHT (2005) Dimocarpus longan longan and Litchi chinensis litchi. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, pp 628–636

    Chapter  Google Scholar 

  • Litz RE, Raharjo S, Matsumoto KW (2005) Biotechnology. In: Menzel CM, Waite GK (eds) Longan and litchi botany production and uses. CABI, Wallingford, pp 49–48

    Chapter  Google Scholar 

  • Liu C, Mei M (2003) Construction of a lychee genetic linkage map based on rapd MARKERS. Acta Hortic (ISHS) 625:131–136

    CAS  Google Scholar 

  • Liu C, Mei M (2005) Classification of lychee cultivars with RAPD analysis. Acta Hortic 665:149–160

    Article  CAS  Google Scholar 

  • Liu Q, Cai W, Shao X (2008) Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta 77:679–683

    Article  CAS  Google Scholar 

  • Liu WW, Kim HJ, Chen HB, Lu XY, Zhou BY (2013) Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. Plant Cell Rep 32:1361–1372

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhu XQ, Li WD, Wen H, Liu CS (2015) Enhancing ergosterol production in Pichia pastoris GS115 by overexpressing squalene synthase gene from Glycyrrhiza uralensis. Chin J Nat Med 13:338–345

    Google Scholar 

  • Lizada C (1993) Mango. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman and Hill, London, pp 255–271

    Chapter  Google Scholar 

  • Loebel R (1976) The litchi. Trap Fruit Bull NSW Dept Agric 6:1–12

    Google Scholar 

  • Long Y, Cheng J, Mei Z (2015) Genetic analysis of litchi (Litchi chinensis Sonn.) in southern China by improved random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR). Mol Biol Rep 42:159

    Article  CAS  PubMed  Google Scholar 

  • Lv Q, Si M, Yan Y, Luo F, Hu G, Wu H, Sun C, Li X, Chen K (2014) Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods 7:621–629

    Article  CAS  Google Scholar 

  • Ma XY, Yi GJ, Huang XL (2009) Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn.) cv. Huaizhi. Acta Physiol Plant 31:401–405

    Article  Google Scholar 

  • Madhou M, Bahorun T, Hormaza JI (2010) Phenotypic and molecular diversity of litchi cultivars in Mauritius. Fruits 65:141–152

    Article  Google Scholar 

  • Madhou M, Normand F, Bahorun T, Hormaza JI (2013) Fingerprinting and analysis of genetic diversity of litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers. Tree Genet Genomes 9:387–396

    Article  Google Scholar 

  • Mahattanatawee K, Perez-Cacho PR, Davenport T, Rouseff R (2007) Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection. J Agric Food Chem 55:1939–1944

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, SHT R, Dhekney S, Moon PA, Litz RE (2004) Cryopreservation and somatic embryogenesis from Dimocarpus longan calli. Pesq Agropec Brasil Brası’lia 39:1261–1263

    Google Scholar 

  • McConchie CA, Batten DJ (1991) Fruit set in lychee (Litchi chinensis Sonn.). Variation between flowers, panicles and trees. Aust J Agric Res 42:1163–1172

    Article  Google Scholar 

  • McConchie CA, Vithanage V, Batten DJ (1994) Intergeneric hybridization between litchi (Litchi chinensis, Sonn.) and longan (Dimocarpus longan Lour.). Ann Bot 74:111–118

    Article  Google Scholar 

  • Menzel CM (1983) The control of floral initiation in lychee: a review. Sci Hortic 21:201–215

    Article  Google Scholar 

  • Menzel CM (1984) The pattern and control of reproductive development in lychee—a review. Sci Hortic 22:333–345

    Article  Google Scholar 

  • Menzel CM (1985) Propagation of lychee: a review. Sci Hortic 25:31–48

    Article  Google Scholar 

  • Menzel C (2000) The physiology of growth and cropping in lychee. Abst. 1st Int. Symposium on litchi and longan. Guangzhou, China, p. 37

    Google Scholar 

  • Menzel CM, Paxton BF (1986) The effect of cincturing at different stages of vegetative flush maturity on the flowering of litchi (Litchi chinensis Sonn.) J Hortic Sci 61:135–139

    Article  Google Scholar 

  • Menzel CM, Simpson DR (1992) Flowering and fruit-set in lychee (Litchi chinensis Sonn.) in subtropical Queensland. Aust J Exp Agric 32:105–111

    Article  Google Scholar 

  • Menzel CM, Waite GK (2005) Litchi and lonngan: botany, production and uses. CABI Publishing, Wellingford

    Book  Google Scholar 

  • Menzel CM, Huang X, Liu C (2005) Cultivars and plant improvement. In: Menzel CM, Waite GK (eds) Litchi and longan. Botany, production and uses. CAB International, Wallingford, pp 59–86

    Chapter  Google Scholar 

  • Mingfang L, Xueqing Z, Yongqiang Z, Xiangshe W, Suyu L, Lei L, Xingrong W (2006) Development and characterization of SSR markers in lychee (Litchi chinensis). Mol Ecol Resour 6:1205–1207

    Article  CAS  Google Scholar 

  • Nakasone HY, Paull RE (1998) Tropical fruits. CAB International, Wallingford, 445 pp

    Google Scholar 

  • Nijjar GR (1981) Litchi cultivation. Punjab Agricultural University, Ludhiana, pp 1–3

    Google Scholar 

  • Ouyang R, Hu GB, Wang ZH (2005) The exploration, research and exploit of early-bearing litchi germplasm in China. China Trop Agric 5:30–32

    Google Scholar 

  • Padilla G, Moon P, Perea I, Litz RE (2009) Cryopreservation of embryogenic cultures of ‘Brewester’ Litchi (Litchi chinensis. Son) and its effect on hyperhydric embryogenic cultures. CryoLetters 30(1):55–63

    CAS  PubMed  Google Scholar 

  • Padilla G, Pérez JA, Perea-Arango I, Moon PA, Gómez-Lim MA, Borges AA, Expósito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell Dev Biol Plant 49(5):510–519

    Article  CAS  Google Scholar 

  • Pandey RM, Sharma HC (1989) The litchi. ICAR, New Delhi, pp 1–79

    Google Scholar 

  • Peng HX, Cao HQ, Zhu JH, Liao HH, Huang FZ, Li JZ et al (2006) Studies on the application of AFLP molecular markers on genetic diversity and classification of good and rare litchi resources in Guangxi. Southwest China J Agr Sci 19:108–111

    Google Scholar 

  • Peterson RA (1986) Mango diseases. Proceedings of the CSIRO First Australian Mango Research Workshop. pp 233–247

    Google Scholar 

  • Ploetz RC (1994) Distribution and prevalence of Fusarium subglutinans in mango tree affected by malformation. Can J Bot 72:7–9

    Article  Google Scholar 

  • Poo ZL, Mai SH, Huang MD (1965) The initially experimental report of utilizing Anastatus sp. to control Tessaratoma papillosa. Acta Phys Sin 1:301–306

    Google Scholar 

  • Prasad LS, Kumar R, Mishra M, Singh AK, Prasad US (1996) Characteristics of litchi seed germination. Hortic Sci 31:1187–1189

    CAS  Google Scholar 

  • Pu ZL (1992) Utilizing Eupelmid wasp Anastatus sp to control litchi stink bug Tessaratoma papillosa. In: Sun Yat-sen University, Guangdong Scientech Association (eds) Selected works of Pu Zhelong. Sun Yat-Sen University press, Guangzhou, pp 135–169 (in Chinese)

    Google Scholar 

  • Puchooa D (2004) In vitro regeneration of lychee (Litchi chinensis Sonn.). Afr J Biotechnol 3:576–584

    CAS  Google Scholar 

  • Putta EK, Sastry N (2014) Screening of methanolic fruit pericarp extract of Litchi chinensis against various disease conditions. AJPHR 2:300–306

    Google Scholar 

  • Raharjo SHT, Litz RE (2007) Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult 89:113–119

    Article  Google Scholar 

  • Rai PS, Bhandary KR (1973) Occurrence of Xyleborus fornicatus Eichhoff (Coleoptera: Scolytidae) on litchi (Litchi chinensis Sonn.) in India [Abstract]. Curr Sci 42(10):369

    Google Scholar 

  • Ram M, Majundar PK (1981) A note on propagation of litchi(Litchi chinensis Sonn.) by stolling. Sci Cult 47:332–334

    Google Scholar 

  • Rakoczy-Trojanowska M, Bolibok H (2004) Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cell Mol Biol Lett 9:221–228

    CAS  PubMed  Google Scholar 

  • Ray PK, Sharma SB (1985) Viability of Litchi chinensis seed when stored in air and water. J Agric Sci (Camb) 104:247–248

    Article  Google Scholar 

  • Ray PK, Sharma SB (1987) Growth, maturity, germination and storage of litchi seeds. Sci Hortic 33:213–221

    Article  Google Scholar 

  • Reichel M, Carle R, Sruamsiri P, Neidhart S (2010) Influence of harvest maturity on quality and shelf-life of litchi fruit (Litchi chinensis Sonn.) Postharvest Biol Technol 57:162–175

    Article  CAS  Google Scholar 

  • Reuveni O, Golubowicz S (1997) Trials of using in vitro techniques for vegetative propagation of mangoes. Acta Hortic 455:496–504

    Article  Google Scholar 

  • Ribeiro IJA, Pommer CV (2004) Breeding guava (Psidium guajava) for resistance to rustcaused by Puccinia psidii. Acta Hortic Leuven 632:75–78

    Article  Google Scholar 

  • Rivera-López J, Ordorica-Falomir C, Wesche-Ebeling P (1999) Changes in anthocyanin concentration in Lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chem 65:195–200

    Article  Google Scholar 

  • Roe DJ, Menzel CM, Oosthuizen JH, Doogan VJ (1997) Effects of current CO2 assimilation and stored reserves on lychee fruit growth. J Hortic Sci 72:397–405

    Google Scholar 

  • Roth G (1963) Post harvest decay of litchi fruit (Litchi chinesis Sonn.). Technical Commun., Dept. Agric. Tech. Serv., South Africa, 16 p

    Google Scholar 

  • Sarin NB, Prasad US, Kumar M, Jain SM (2009) Litchi breeding for genetic improvement. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 217–245

    Chapter  Google Scholar 

  • Scott KJ, Brown BL, Chaplin GR, Wilcox ME, Bain JM (1982) The control of rotting and browning of litchi fruit by hot benomyl and plastic films. Sci Hortic Amsterdam 16:253–262

    Article  CAS  Google Scholar 

  • Shih PM, Chen IZ (2006) Observation of embryo sac development of litchi (Litchi chinensis Sonn.). J Taiwan Soc Hortic Sci 46:359–368

    Google Scholar 

  • Sim CH, Mahani MC, Choong CY, Salma I (2005) Transferability of SSR markers from lychee (Litchi chinensis Sonn.) to pulasan (Nephelium ramboutan-ake L.). Fruits 60:379–385

    Article  CAS  Google Scholar 

  • Singh JP, Chandel R, Mishra B, Suneetha V (2013) Evaluation of antimicrobial and anti-oxidant property of lychee’s seed for therapeutic purpose. Int J Pharm Sci Rev Res 19:72–76

    Google Scholar 

  • Singh UP, Singh DP, Singh M, Maurya S, Srivastava JS, Singh RB, Singh SP (2004) Characterization of phenolic compounds in some Indian mango cultivars. Int J Food Sci Nutr 55(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Das DK (2013) Transformation of Litchi (Litchi chinensis Sonn.) with Gly I + II gene leads to enhance salt tolerance. Int J Biotechnol 1(11):483–495

    Google Scholar 

  • Sivakumar G, Kim SJ, Hahn EJ, Paek KY (2005) Optimizing environmental factors for large-scale multiplication of Chrysanthemum (Chrysanthemum grandiflorum) in balloon-type bioreactor culture. In Vitro Cell Dev Biol Plant 41:822–825

    Article  CAS  Google Scholar 

  • Souza M, Singh R, Reddy P, Hukkeri V, Byahatti V (2006) Hepatoprotective activity of fruit pulp extract of Litchi chinensis Sonner on carbon tetrachloride induced hepatotoxicity in albino rats. Int J Alt Med 4:1–5

    Google Scholar 

  • Sowa S, Roos EE (1991) Anesthetic storage of recalcitrant seed: nitrous oxide prolongs longevity of lychee and longan. Hortic Sci 26(5):597–599

    CAS  Google Scholar 

  • Stern RA, Gazit S (2003) The reproductive biology of lychee. Hortic Rev 28:393–453

    Google Scholar 

  • Stern RA, Gazit S, El-Batsri R, Degani C (1993) Pollen parent effect on outcrossing rate, yield and fruit characteristics of ‘Floridian’ and ‘Mauritius’ lychee. J Amer Soc Hort Sci 118:109–114

    Google Scholar 

  • Stern RA, Eisenstein D, Voet H, Gazit S (1996) Anatomical structure of two day old litchi ovules in relation to fruit set and yield. J Hortic Sci 71:661–671

    Article  Google Scholar 

  • Su MS, Lin SQ, Chen ZG, Yu CH, Lai ZX, Chen XJ (2004) Callus induction of litchi from flower. South China Fruit 33(6):62–63

    Google Scholar 

  • Sun J, Li C, Prasad KN, You X, Li L, Liao F, Peng H, He X, Li Z, Zhang Y (2012) Membrane deterioration, enzymatic browning and oxidative stress in fresh fruits of three litchi cultivars during six day storage. Sci Hortic 148:97–103. doi:10.1016/j.scienta.2012.09.023

  • Tan SD, Wei JD, Lan RX, Wei JX (1999) Study on the structure and dynamics of pest community in lichee orchard. J Plant Prot 26:213–218

    Google Scholar 

  • Teng YH (1996) Pruning and regulation of blooming time in high density planting of Lychee (Litchi chinensis Sonn.). Ph.D. Thesis. Department of Horticulture, National Taiwan University, Taipei, Taiwan

    Google Scholar 

  • Thorpe TA (1990) The current status of plant tissue culture. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier, Amsterdam, pp 1–33

    Chapter  Google Scholar 

  • Thomas P, Ravindra MB (1997) Shoot tip culture in mango; Influence of medium, genotype, explant factors, season and decontamination treatments on phenolic exudation, explant survival and axenic culture establishment. Hortic Sci 72:713–722

    Article  Google Scholar 

  • Tongpamnak P, Patanatara A, Srinivas P, Babprasert C (2002) Determination of genetic diversity and relationshiops among Thai litchi accessions by RAPD and AFLP markers. Kasetsart J (Nat Sci) 36:370–380

    CAS  Google Scholar 

  • Underhill S, Critchley C (1994) Anthocyanin decolorisation and its role in lychee pericarp browning. Aust J Exp Agric 34:115–122

    Article  CAS  Google Scholar 

  • Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ (1997) Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res 7:996–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ussuf KK, Laxmi NH, Mitra R (2001) Proteinase inhibition: plant derived genes of insecticide protein for developing in sect resistant transgenic plants. Curr Sci 80:847–853

    CAS  Google Scholar 

  • Vevai EJ (1971) Know your crop, its pest problems and control of minor tropical fruits. Pesticides 5:31–54

    Google Scholar 

  • Viruel MA, Hormaza JI (2004) Development, characterization and variability analysis of microsatellites in lychee. Theor Appl Genet 108:896–902

    Article  CAS  PubMed  Google Scholar 

  • Villiers E, De A, Mathee WA (1973) The occurrence of bark borers on litchi and other fruit trees. Citrus Growers Subtrop Fruit J 477:17–19

    Google Scholar 

  • Wang JB (2007) Analysis of physiological changes and differential gene expression during pericarp senescence of postharvest Litchi. Dissertation, South China University of Tropical Agriculture

    Google Scholar 

  • Wang HC, Huang XM, Hu GB, Huang HB (2003a) Studies on the relationship between anthocyanin biosynthesis and related enzymes in litchi pericarp. Sci Agric Sin 37:2028–2032

    Google Scholar 

  • Wang XH, Chen YG, Hua M, He F, Han J, Miao PS (2003b) Identification of some litchi germplasms by RAPD analysis. Chin J Trop Agric 23(2):1–4 (in Chinese)

    Google Scholar 

  • Wang X, Yuan S, Wang J, Lin P, Liu G, Lu Y (2006a) Anti-cancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215:168–178

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Deng SS, Liu ZY, Liu LZ, Du ZJ, Xu BY, Chen YY (2006b) RAPD analysis on main cultivars of litchi (Litchi chinensis Sonn.) in Hainan. J Agric Biotechnol 14(3):391–396 (in Chinese)

    Google Scholar 

  • Wang G, Li HL, Wang JB (2013) Primary study on the callus induction from anther of two litchi (Litchi chinensis Sonn.) cultivars. Chin J Trop Crops 34(4):669–674

    Google Scholar 

  • Wang F, Wang JX, Li Q, He M (2014) Effects of GA3 and IAA on the germination of four species of Clematis seeds. Pratacultural Sci 31(4):672–676

    CAS  Google Scholar 

  • Weber JL (1990) Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. In: Davis KE, Tilghman SM (eds) Genome analysis, Genetic and physical mapping, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 159–181

    Google Scholar 

  • Witjaksono, Litz RE (1999) Induction and growth characteristics of embryogenic avocado cultures. Plant Cell Tissue Organ Cult 58:19–29

    Article  Google Scholar 

  • Wu SX (1998) Encyclopaedia of China fruits: Litchi. China Forestry Press, Beijing, 221 p

    Google Scholar 

  • Wu YH, Chiu CH, Yang DJ, Lin YL, Tseng JK, Chen YC (2013) Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity. J Funct Foods 5:923–929

    Article  CAS  Google Scholar 

  • Xia Q, Chen HRZ, Fu JR (1992a) Effect of desiccation, temperature and other factors on the germination of lychee (Litchi chinensis Sonn.) and longan (Euphoria longan steud.) seeds. Seed Sci Technol 20:119–127

    Google Scholar 

  • Xia Q, Chen HRZ, Fu ZJR (1992b) Moist storage of lychee (Litchi chinensis Sonn.) and longan (Euphoria longan steud.) seeds. Seed Sci Technol 20:269–279

    Google Scholar 

  • Xiang X, Ou LX, Chen HB, Sun QM, Chen JZ, Cai CH et al (2010) EST-SSR analysis of genetic diversity in 96 litchi (Litchi chinensis Sonn.) germplasm resources in China. Genomics Appl Biol 29:1082–1092

    CAS  Google Scholar 

  • Xie YM, Yi GJ, Zhang QM, Zeng JW (2006) Somatic embryogenesis and plantlet regeneration from anther of Feizixiao litchi. Chin J Trop Crops 27(1):68–72

    Google Scholar 

  • Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T et al (2014) The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 9:e93818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang DJ, Chang YY, Hsu CL, Liu CW, Wang Y, Chen YC (2010) Protective effect of a litchi (Litchi chinensis Sonn.)-flower-water-extract on cardiovascular health in a high-fat/cholesterol-dietary hamsters. Food Chem 119:1457–1464

    Article  CAS  Google Scholar 

  • Yang DJ, Chang YZ, Chen YC, Liu SC, Hsu CH, Lin JT (2012) Anti-oxidant effect and active components of Litchi (Litchi chinensis Sonn.) flower. Food Chem Toxicol 50:3056–3061

    Article  CAS  PubMed  Google Scholar 

  • Yi GJ, Huo HQ, Chen DC, Huang ZR, Cai CH, Qiu YP (2003) Studies on genetic relationship among litchi varieties by using AFLP. Acta Hortic Sin 30:399–403

    Google Scholar 

  • Yu YB (1991) Study on some factors in tissue culture of lychee(Litchi chinensis). Fujian Agric Sci Tech 5:17–18

    Google Scholar 

  • Yu CH, Chen ZG (1997) Induction of litchi embryogenic calli by immature embryos and anthers culture in vitro. J Fujian Agr Univ 26:168–172

    Google Scholar 

  • Yu CH, Chen Z (1998) Embryogenic suspension culture and protoplast isolation in lychee. Chinese J Trop Crops 19:16–21 (in Chinese with English abstract)

    Google Scholar 

  • Yu CH, Chen ZG, Lu LX (1996) Regeneration of plantlets from protoplasts culture of litchi. J Fujian Agric Univ 25(3):386

    Google Scholar 

  • Yu SQ, Fang LX, Tang WQ, Xue Y, Liu JF, Wang CX, Li DS, Liu ZC (1995) Research on using green technologies in controlling major litchi insect pests and diseases. Guangdong Agric. Sci. 3:38–40 (in Chinese)

    Google Scholar 

  • Yu C, Chen Z, Lu L, Lin J (2000) Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Organ Cult 61:51–58

    Article  CAS  Google Scholar 

  • Zhang D, Quantick PC, Grigor JM (2000) Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol Technol 19:165–172

    Article  CAS  Google Scholar 

  • Zhou T, Chu C-L, Liu WT, Schaneider KE (2001) Postharvest control of blue mold and gray mold on apples using isolates of Pseudomonas syringae. Can J Plant Pathol 23:246–252

    Article  Google Scholar 

  • Zhou LN, Kuang ZS, Ma XJ, Chen JQ, Cao J (1996) The study of factors affecting somatic embryogenesis in young embryo culture of Litchi chinensis. J Agric Biotechnol 4:161–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pandey, D.K., Dey, A., Singh, J. (2017). Biotechnological Advances in Lychee (Litchi chinensis) and Their Future Implication in Improvement of Crop. In: Kumar, M., Kumar, V., Prasad, R., Varma, A. (eds) The Lychee Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3644-6_3

Download citation

Publish with us

Policies and ethics