Skip to main content

Advances in Genetic Transformation of Litchi

  • Chapter
  • First Online:
The Lychee Biotechnology

Abstract

Litchi (Litchi chinensis Sonn.) is one of the most delicious fruits fetching high values in the market, and the area under its cultivation has increased manyfolds. It is generally multiplied by vegetative propagation method, and breeding is being done by conventional and molecular marker-assisted methods to achieve the quality improvement. There are various hybrids and cultivars developed conventionally by plant breeders in litchi. But due to laborious process, linkage drag, low fertility, longer flowering and fruiting time and high levels of heterozygosity, these conventional methods haven’t used to its potential in litchi. Plant genetic transformation can be a great tool in the modern molecular breeding of crops. It helps in transfer genes between unrelated plants resulting in genetically modified crop species with better agronomical traits, better nutritional values, disease resistance, insect tolerance and other desirable characteristics. Genetic transformation in plants is synergistic to conventional plant breeding technologies. By using this, the breeders can introduce novel genes irrespective of species barrier and can create phenotypes with desired characters. Over the last decade, some remarkable achievements have been made in the field of development of efficient transformation methods in field crops. Also in litchi genetic engineering technique can be used to introduce new traits in to popular genotypes, which can result into new cultivars with desirable traits. In this chapter we review the transformation methods which are being used or can be used for genetic improvement in litchi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (2015) Subtropical fruits. In: Pollination biology, vol 1. Springer, pp 347–397

    Google Scholar 

  • Bates GW (1999) Plant transformation via protoplast electroporation. Methods Mol Biol 111:359–366

    CAS  PubMed  Google Scholar 

  • Bevan MW, Flavell R, Chilton MD (1983) A chimeric anti-biotic resistance gene as a selectable marker for plant cell transformation

    Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Phytopathology 48:419

    Article  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Chaparro-Pulido CA, Montiel MM, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2014) Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cell Dev Biol Plant 50:292–298

    Article  CAS  Google Scholar 

  • Crane JH, Sanford RE, McMillan Jr RT (1997) Control of lychee anthracnose by foliar applications of tebuconazole, mancozeb, and copper hydroxide on ‘Mauritius’ lychee fruit under south Florida conditions. Paper presented at: Proceedings of the Florida State Horticultural Society

    Google Scholar 

  • Das D, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana). Curr Trends Biotechnol Pharm 4:820–833

    CAS  Google Scholar 

  • Das D, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109:315–325

    Article  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513

    CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2008) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395

    Article  PubMed  Google Scholar 

  • De Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci 82:7870–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enríquez-Obregón GA, Vazquez-Padron RI, Prieto-Samsonov DL, Perez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using anti-oxidant compounds. Biotecnol Apl 14:169–174

    Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, Gustavo A, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  • Faurie C, Golzio M, Phez E, Teissie J, Rols MP (2005) Electric field-induced cell membrane permeabilization and gene transfer: theory and experiments. Eng Life Sci 5:179–186

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Gelvin SB (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4:1–46

    Article  CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide (American Chemical Society)

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci 82:5824–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S (2000) World trade in litchi: past, present and future. In: Paper presented at: I International Symposium on Litchi and Longan 558

    Google Scholar 

  • Gómez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449

    Article  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Guerche P, Bellini C, Le Moullec J-M, Caboche M (1987) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69:621–628

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci 94:11726–11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille J, Verheggen F, Roelvink P, Franssen H, Van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hooykaas PJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. In: 10 years plant molecular biology. Springer, pp 15–38

    Google Scholar 

  • Jayaraj J, Anand A, Muthukrishnan S, Punja Z (2004) Pathogenesis-related proteins and their roles in resistance to fungal pathogens. In: Fungal disease resistance in plants: biochemistry, molecular biology, and genetic engineering, pp 139–177

    Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 83:8447–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Job D (2002) Plant biotechnology in agriculture. Biochimie 84:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64

    Article  Google Scholar 

  • Koncz C, Németh K, Rédei GP, Schell J (1994) Homology recognition during T-DNA integration into the plant genome. In: Homologous recombination and gene silencing in plants. Springer, pp 167–189

    Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci 84:6750–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Y, Huang X, Li J, Wang H, Li J (2013) De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics 14(1): 552

    Google Scholar 

  • Li WC, Wu JY, Zhang HN, Shi SY, Liu LQ, Shu B, Liang QZ, Xie JH, Wei YZ (2014) De novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn. Int J Mol Sci 15:17667–17685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Y, Huang X, Li J, Wang H, Li J (2015a) An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Frontiers in Plant Science 6

    Google Scholar 

  • Li Q, Chen P, Dai S, Sun Y, Yuan B, Kai W, Pei Y, He S, Liang B, Zhang Y (2015b) PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. J Exp Bot 66:3765–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lihui Z, Liuxin L (2003) A preliminary report on Agrobacterium tumefaciens mediated genetic transformation of Litchi. J Fruit Sci 4:011

    Google Scholar 

  • Lin T, Lin Y, Ishiki K (2005) Genetic diversity of Dimocarpus longan in China revealed by AFLP markers and partial rbcL gene sequences. Sci Hortic 103:489–498

    Article  CAS  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xiao Z, Bao X, Yang X, Fang J, Xiang X (2015) Identifying litchi (Litchi chinensis Sonn.) cultivars and their genetic relationships using single nucleotide polymorphism (SNP) markers. PLoS One 10:e0135390

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinensis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:1

    Google Scholar 

  • Madhou M, Normand F, Bahorun T, Hormaza J (2013) Fingerprinting and analysis of genetic diversity of litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers. Tree Genet Genomes 9:387–396

    Article  Google Scholar 

  • McConchie C, Vithanage V, Batten D (1994) Intergeneric hybridisation between litchi (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.). Ann Bot 74:111–118

    Article  Google Scholar 

  • Menzel C (1985) Propagation of lychee: a review. Sci Hortic 25:31–48

    Article  Google Scholar 

  • Menzel C (2002) The lychee crop in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand

    Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501–1501

    Article  CAS  PubMed  Google Scholar 

  • Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Article  CAS  Google Scholar 

  • Nishizawa Y, Hibi T (1991) Rice chitinase gene: cDNA cloning and stress-induced expression. Plant Sci 76:211–218

    Article  CAS  Google Scholar 

  • Ow DW, De Wet JR, Helinski DR, Howel SH, Wood KV, Deluca M (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  CAS  PubMed  Google Scholar 

  • Padilla G, Pérez JA, Perea-Arango I, Moon PA, Gómez-Lim MA, Borges AA, Expósito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell Dev Biol Plant 49:510–519

    Article  CAS  Google Scholar 

  • Puchooa D (2004) Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. J Appl Hortic 6:11–15

    CAS  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:S298–S308

    Article  CAS  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Rui-Feng H, Yuan-Yuan W, Bo D, Ming T, Ai-Qing Y, Li-Li Z, Guang-Cun H (2006) Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Genet Sin 33:269–276

    Article  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Sarin N, Prasad U, Kumar M, Jain SM (2009) Litchi breeding for genetic improvement. In: Breeding plantation tree crops: tropical species. Springer, pp 217–245

    Google Scholar 

  • Saunders JA, Lin CH, Hou BH, Cheng J, Tsengwa N, Lin JJ, Smith CR, McIntosh MS, Van Wert S (1995) Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen. Mol Biotechnol 3:181–190

    Article  CAS  PubMed  Google Scholar 

  • Serres R, Stang E, McCabe D, Russell D, Mahr D, McCown B (1992) Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J Am Soc Hortic Sci 117:174–180

    CAS  Google Scholar 

  • Sidhu JS (2012) Tropical fruit II: production, processing and quality of guava, lychee, and papaya. In: Handbook of fruits and fruit processing, 2nd edn, pp 591–628

    Google Scholar 

  • Singh H, Babita S (2002) Lychee production in India. Lychee Production in the Asia-Pacific Region Food and Agricultural Organization the United Nations, Bangkok, Thailand, pp 55–67

    Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science:671–673

    Google Scholar 

  • Sorokin AP, Ke X-Y, Chen D-F, Elliott MC (2000) Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci 156:227–233

    Article  CAS  PubMed  Google Scholar 

  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Viruel M, Hormaza J (2004) Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae). Theor Appl Genet 108:896–902

    Article  CAS  PubMed  Google Scholar 

  • Visarada K, Meena K, Aruna C, Srujana S, Saikishore N, Seetharama N (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49:1555–1563

    Article  CAS  Google Scholar 

  • Waldron C, Murphy E, Roberts J, Gustafson G, Armour S, Malcolm S (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu B, Xiao Q, Li H, Sun J (2014) Cloning and expression analysis of litchi (Litchi chinensis Sonn.) polyphenol oxidase gene and relationship with postharvest pericarp browning. PLoS One 9:e93982

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Tan H-W, Fang W, Meinhardt LW, Mischke S, Matsumoto T, Zhang D (2015) Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. Hortic Res 2:14065

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114:143–150

    Article  CAS  Google Scholar 

  • Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeldin EL, Jury TP, Serres RA, McCown BH (2002) Tolerance to the herbicide glufosinate in transgenic cranberry (Vaccinium macrocarpon Ait.) and enhancement of tolerance in progeny. J Am Soc Hortic Sci 127:502–507

    CAS  Google Scholar 

  • Zhang H-N, Wei Y-Z, Shen J-Y, Lai B, Huang X-M, Ding F, Su Z-X, Chen H-B (2014) Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Rep 33:1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh N. Pudake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dalei, K., Sahu, B.B., Kumari, M., Tripathi, R.M., Pudake, R.N. (2017). Advances in Genetic Transformation of Litchi. In: Kumar, M., Kumar, V., Prasad, R., Varma, A. (eds) The Lychee Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3644-6_18

Download citation

Publish with us

Policies and ethics