Advances in Genetic Transformation of Litchi

  • Kalpana Dalei
  • Binod Bihari Sahu
  • Maya Kumari
  • Ravi Mani Tripathi
  • Ramesh N. Pudake


Litchi (Litchi chinensis Sonn.) is one of the most delicious fruits fetching high values in the market, and the area under its cultivation has increased manyfolds. It is generally multiplied by vegetative propagation method, and breeding is being done by conventional and molecular marker-assisted methods to achieve the quality improvement. There are various hybrids and cultivars developed conventionally by plant breeders in litchi. But due to laborious process, linkage drag, low fertility, longer flowering and fruiting time and high levels of heterozygosity, these conventional methods haven’t used to its potential in litchi. Plant genetic transformation can be a great tool in the modern molecular breeding of crops. It helps in transfer genes between unrelated plants resulting in genetically modified crop species with better agronomical traits, better nutritional values, disease resistance, insect tolerance and other desirable characteristics. Genetic transformation in plants is synergistic to conventional plant breeding technologies. By using this, the breeders can introduce novel genes irrespective of species barrier and can create phenotypes with desired characters. Over the last decade, some remarkable achievements have been made in the field of development of efficient transformation methods in field crops. Also in litchi genetic engineering technique can be used to introduce new traits in to popular genotypes, which can result into new cultivars with desirable traits. In this chapter we review the transformation methods which are being used or can be used for genetic improvement in litchi.


Litchi chinensis Heterozygosity Genetic transformation Phenotype 


  1. Abrol DP (2015) Subtropical fruits. In: Pollination biology, vol 1. Springer, pp 347–397Google Scholar
  2. Bates GW (1999) Plant transformation via protoplast electroporation. Methods Mol Biol 111:359–366PubMedGoogle Scholar
  3. Bevan MW, Flavell R, Chilton MD (1983) A chimeric anti-biotic resistance gene as a selectable marker for plant cell transformationGoogle Scholar
  4. Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606CrossRefGoogle Scholar
  5. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Phytopathology 48:419CrossRefGoogle Scholar
  6. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20PubMedGoogle Scholar
  7. Chaparro-Pulido CA, Montiel MM, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2014) Development of an efficient transient transformation protocol for avocado (Persea americana Mill.) embryogenic callus. In Vitro Cell Dev Biol Plant 50:292–298CrossRefGoogle Scholar
  8. Crane JH, Sanford RE, McMillan Jr RT (1997) Control of lychee anthracnose by foliar applications of tebuconazole, mancozeb, and copper hydroxide on ‘Mauritius’ lychee fruit under south Florida conditions. Paper presented at: Proceedings of the Florida State Horticultural SocietyGoogle Scholar
  9. Das D, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana). Curr Trends Biotechnol Pharm 4:820–833Google Scholar
  10. Das D, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109:315–325CrossRefGoogle Scholar
  11. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513Google Scholar
  12. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466CrossRefGoogle Scholar
  13. de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2008) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395CrossRefPubMedGoogle Scholar
  14. De Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci 82:7870–7873CrossRefPubMedPubMedCentralGoogle Scholar
  15. Enríquez-Obregón GA, Vazquez-Padron RI, Prieto-Samsonov DL, Perez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using anti-oxidant compounds. Biotecnol Apl 14:169–174Google Scholar
  16. Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, Gustavo A, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27CrossRefGoogle Scholar
  17. Faurie C, Golzio M, Phez E, Teissie J, Rols MP (2005) Electric field-induced cell membrane permeabilization and gene transfer: theory and experiments. Eng Life Sci 5:179–186CrossRefGoogle Scholar
  18. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80:4803–4807CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fraley RT, Rogers SG, Horsch RB, Gelvin SB (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4:1–46CrossRefGoogle Scholar
  20. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide (American Chemical Society)Google Scholar
  21. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci 82:5824–5828CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ghosh S (2000) World trade in litchi: past, present and future. In: Paper presented at: I International Symposium on Litchi and Longan 558Google Scholar
  23. Gómez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449CrossRefGoogle Scholar
  24. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560CrossRefPubMedGoogle Scholar
  25. Guerche P, Bellini C, Le Moullec J-M, Caboche M (1987) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69:621–628CrossRefPubMedGoogle Scholar
  26. Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116CrossRefPubMedGoogle Scholar
  27. Hansen G, Shillito RD, Chilton MD (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci 94:11726–11730CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hille J, Verheggen F, Roelvink P, Franssen H, Van Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol Biol 7:171–176CrossRefPubMedGoogle Scholar
  29. Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  30. Hooykaas PJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. In: 10 years plant molecular biology. Springer, pp 15–38Google Scholar
  31. Jayaraj J, Anand A, Muthukrishnan S, Punja Z (2004) Pathogenesis-related proteins and their roles in resistance to fungal pathogens. In: Fungal disease resistance in plants: biochemistry, molecular biology, and genetic engineering, pp 139–177Google Scholar
  32. Jefferson RA, Burgess SM, Hirsh D (1986) beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 83:8447–8451CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  34. Job D (2002) Plant biotechnology in agriculture. Biochimie 84:1105–1110CrossRefPubMedGoogle Scholar
  35. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55CrossRefPubMedGoogle Scholar
  36. Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64CrossRefGoogle Scholar
  37. Koncz C, Németh K, Rédei GP, Schell J (1994) Homology recognition during T-DNA integration into the plant genome. In: Homologous recombination and gene silencing in plants. Springer, pp 167–189Google Scholar
  38. Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci 84:6750–6754CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li C, Wang Y, Huang X, Li J, Wang H, Li J (2013) De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genomics 14(1): 552Google Scholar
  40. Li WC, Wu JY, Zhang HN, Shi SY, Liu LQ, Shu B, Liang QZ, Xie JH, Wei YZ (2014) De novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn. Int J Mol Sci 15:17667–17685CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li C, Wang Y, Huang X, Li J, Wang H, Li J (2015a) An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Frontiers in Plant Science 6Google Scholar
  42. Li Q, Chen P, Dai S, Sun Y, Yuan B, Kai W, Pei Y, He S, Liang B, Zhang Y (2015b) PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. J Exp Bot 66:3765–3774CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lihui Z, Liuxin L (2003) A preliminary report on Agrobacterium tumefaciens mediated genetic transformation of Litchi. J Fruit Sci 4:011Google Scholar
  44. Lin T, Lin Y, Ishiki K (2005) Genetic diversity of Dimocarpus longan in China revealed by AFLP markers and partial rbcL gene sequences. Sci Hortic 103:489–498CrossRefGoogle Scholar
  45. Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793CrossRefPubMedGoogle Scholar
  46. Liu W, Xiao Z, Bao X, Yang X, Fang J, Xiang X (2015) Identifying litchi (Litchi chinensis Sonn.) cultivars and their genetic relationships using single nucleotide polymorphism (SNP) markers. PLoS One 10:e0135390CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinensis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:1Google Scholar
  48. Madhou M, Normand F, Bahorun T, Hormaza J (2013) Fingerprinting and analysis of genetic diversity of litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers. Tree Genet Genomes 9:387–396CrossRefGoogle Scholar
  49. McConchie C, Vithanage V, Batten D (1994) Intergeneric hybridisation between litchi (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.). Ann Bot 74:111–118CrossRefGoogle Scholar
  50. Menzel C (1985) Propagation of lychee: a review. Sci Hortic 25:31–48CrossRefGoogle Scholar
  51. Menzel C (2002) The lychee crop in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, ThailandGoogle Scholar
  52. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462CrossRefPubMedGoogle Scholar
  53. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501–1501CrossRefPubMedGoogle Scholar
  54. Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413CrossRefGoogle Scholar
  55. Nishizawa Y, Hibi T (1991) Rice chitinase gene: cDNA cloning and stress-induced expression. Plant Sci 76:211–218CrossRefGoogle Scholar
  56. Ow DW, De Wet JR, Helinski DR, Howel SH, Wood KV, Deluca M (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859CrossRefPubMedGoogle Scholar
  57. Padilla G, Pérez JA, Perea-Arango I, Moon PA, Gómez-Lim MA, Borges AA, Expósito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell Dev Biol Plant 49:510–519CrossRefGoogle Scholar
  58. Puchooa D (2004) Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. J Appl Hortic 6:11–15Google Scholar
  59. Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:S298–S308CrossRefGoogle Scholar
  60. Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763CrossRefPubMedGoogle Scholar
  61. Rui-Feng H, Yuan-Yuan W, Bo D, Ming T, Ai-Qing Y, Li-Li Z, Guang-Cun H (2006) Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Genet Sin 33:269–276CrossRefGoogle Scholar
  62. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37CrossRefGoogle Scholar
  63. Sarin N, Prasad U, Kumar M, Jain SM (2009) Litchi breeding for genetic improvement. In: Breeding plantation tree crops: tropical species. Springer, pp 217–245Google Scholar
  64. Saunders JA, Lin CH, Hou BH, Cheng J, Tsengwa N, Lin JJ, Smith CR, McIntosh MS, Van Wert S (1995) Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen. Mol Biotechnol 3:181–190CrossRefPubMedGoogle Scholar
  65. Serres R, Stang E, McCabe D, Russell D, Mahr D, McCown B (1992) Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J Am Soc Hortic Sci 117:174–180Google Scholar
  66. Sidhu JS (2012) Tropical fruit II: production, processing and quality of guava, lychee, and papaya. In: Handbook of fruits and fruit processing, 2nd edn, pp 591–628Google Scholar
  67. Singh H, Babita S (2002) Lychee production in India. Lychee Production in the Asia-Pacific Region Food and Agricultural Organization the United Nations, Bangkok, Thailand, pp 55–67Google Scholar
  68. Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science:671–673Google Scholar
  69. Sorokin AP, Ke X-Y, Chen D-F, Elliott MC (2000) Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci 156:227–233CrossRefPubMedGoogle Scholar
  70. Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423CrossRefPubMedGoogle Scholar
  71. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445CrossRefPubMedPubMedCentralGoogle Scholar
  72. Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336CrossRefGoogle Scholar
  73. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154CrossRefPubMedGoogle Scholar
  74. Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229CrossRefPubMedGoogle Scholar
  75. Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250CrossRefPubMedGoogle Scholar
  76. Viruel M, Hormaza J (2004) Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae). Theor Appl Genet 108:896–902CrossRefPubMedGoogle Scholar
  77. Visarada K, Meena K, Aruna C, Srujana S, Saikishore N, Seetharama N (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49:1555–1563CrossRefGoogle Scholar
  78. Waldron C, Murphy E, Roberts J, Gustafson G, Armour S, Malcolm S (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108CrossRefPubMedGoogle Scholar
  79. Wang J, Liu B, Xiao Q, Li H, Sun J (2014) Cloning and expression analysis of litchi (Litchi chinensis Sonn.) polyphenol oxidase gene and relationship with postharvest pericarp browning. PLoS One 9:e93982CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang B, Tan H-W, Fang W, Meinhardt LW, Mischke S, Matsumoto T, Zhang D (2015) Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. Hortic Res 2:14065CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114:143–150CrossRefGoogle Scholar
  82. Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zeldin EL, Jury TP, Serres RA, McCown BH (2002) Tolerance to the herbicide glufosinate in transgenic cranberry (Vaccinium macrocarpon Ait.) and enhancement of tolerance in progeny. J Am Soc Hortic Sci 127:502–507Google Scholar
  84. Zhang H-N, Wei Y-Z, Shen J-Y, Lai B, Huang X-M, Ding F, Su Z-X, Chen H-B (2014) Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing. Plant Cell Rep 33:1723–1735CrossRefPubMedGoogle Scholar
  85. Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kalpana Dalei
    • 1
  • Binod Bihari Sahu
    • 1
  • Maya Kumari
    • 2
  • Ravi Mani Tripathi
    • 3
  • Ramesh N. Pudake
    • 3
  1. 1.Department of Life ScienceNIT RourkelaRourkelaIndia
  2. 2.Defence Research and Development Organization (DRDO)New DelhiIndia
  3. 3.Amity Institute of NanotechnologyAmity UniversityNoidaIndia

Personalised recommendations