Genetic Manipulation of Litchi for Crop Improvement: Challenges and Possibilities

  • Anjana RustagiEmail author
  • Garima Malik
  • Samira Chugh
  • Shachi Agrawal
  • Shashi Shekhar
  • Nishakant Pandey


Litchi fruit crop comprises a lucrative commodity, which significantly contributes to the economic sustainability and livelihood for millions of people in Southeast Asia. Litchi fruit is accepted globally due to its unique taste, rich nutritional value, and exotic aroma and flavor. However, its commercial production and geographical expansion remain constrained due to several reasons that include limited availability of suitable cultivars, irregular flowering, poor production, and unpredictable weather which limits pollination during blooming. At the present juncture, there is a lack of optimized breeding system for crop improvement. In vitro plant regeneration has been harnessed to give an impetus to production of litchi, but litchi being a recalcitrant plant and restrictions in explant collection slows the progress in this regard. Genetic transformation along with omics approach and biotechnology tools may immensely help in development of desired cultivars of litchi. In the present chapter, we discuss the challenges and possibilities of genetic manipulation of litchi.


Litchi In vitro plant regeneration Genetic transformation 


  1. Amin MN, Razzaque MA (1995) Induction of somatic embryogenesis in the cultures of zygotic embryos of lychee. Bangladesh J Bot 24:25–29Google Scholar
  2. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52CrossRefPubMedPubMedCentralGoogle Scholar
  3. Callahan A, Scorza R (2007) Effects of a peach antisense ACC oxidase gene on plum fruit quality. In: Litz RE, Scorza R (eds) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Horticulturae, vol 738. International Society for Horticultural Science, Leuven, pp 567–573Google Scholar
  4. Ceng LH (2003) Agrobacterium tumefaciens-mediated genetic transformation of litchi (Litchi chinensis Sonn.) With LEAFY Gene. Global ID: 1103360065956300
  5. Cruz-Hernández A, Litz RE (1997) Transformation of mango somatic embryos. Acta Hort 455: 292–298Google Scholar
  6. Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv Bedana). Curr Trends Biotechnol Pharm 4(3):820–833Google Scholar
  7. Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109(2). doi: 10.1007/s11240-011-0097-2
  8. Das DK, Shiva Prakash N, Bhalla-Sarin N (1999) Multiple shoot induction and plant regeneration in litchi (Litchi chinensis Sonn.). Plant Cell Rep 18:691–695CrossRefGoogle Scholar
  9. Das DK, Prabhakar M, Kumari D, Kumari N (2016) Expression of SAMDC gene for enhancing the shelf life for improvement of fruit quality using biotechnological approaches into litchi (Litchi chinensis Sonn.) cultivars. Adv Biosci Biotechnol 07:300–310. doi: 10.4236/abb.2016.76028 CrossRefGoogle Scholar
  10. Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘LaFrance’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42CrossRefGoogle Scholar
  11. Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruit crops. In Vitro Cell Dev Biol Plant 40:442–449CrossRefGoogle Scholar
  12. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560CrossRefPubMedGoogle Scholar
  13. Haseloff J, Siemering K, Hodge S, Golbik R, Prasher D (1996) The green fluorescent protein gene must be modified for use as a vital marker in Arabidopsis thaliana. Plant Physiol 111:17Google Scholar
  14. Jackson MB, Abbott AJ, Belcher AJ, Hall KC (1991) Ventilation in plant tissue cultures effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explants development. Ann Bot 67:229–237CrossRefGoogle Scholar
  15. Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jimenez-Bremont JF, Oscar A, Ruiz OA, Rodriguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821. CrossRefPubMedGoogle Scholar
  17. Kantharanjah AS, Mc Conchie CA, Dodd WA (1992) In vitro embryo culture and induction of multiple shoots in lychee. Ann Bot 70:153–156CrossRefGoogle Scholar
  18. Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci U S A 98:14156–14161CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1: a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81Google Scholar
  20. Kumar M, Prakash NS, Prasad US, Sarin NB (2006a) A novel approach of regeneration from nodal explants of field grown litchi (Litchi chinensis Sonn.) fruit trees. J Plant Sci 5(3):321–327Google Scholar
  21. Kumar M, Gupta M, Shrivastava D, Prasad M, Prasad US, Sarin NB (2006b) Genetic relatedness among Indian litchi accessions (Litchi chinensis Sonn.) by RAPD markers. Int J Agric Res 1:390–400CrossRefGoogle Scholar
  22. Lehti-Shiu MD, Adamczyk BJ, Fernandez DE (2005) Expression of MADS-box genes during the embryonic phase in Arabidopsis. Plant Mol Biol 58:89–107CrossRefPubMedGoogle Scholar
  23. Li-hui Z, Liu-xin L (2001) Transformation and transgenic plantlets regeneration of litchi (Litchi chinensis Sonn.) with LEAFY gene. J Fujian Agric Univ 30(4):563–564. (in Chinese)Google Scholar
  24. Litz RE (1988) Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. J Plant Physiol 132:190–193CrossRefGoogle Scholar
  25. Magdalita PM, Laurena AC, Yabut-Perez BM, Mendoza EMT, Villegas VN, Botella JR (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase anti- sense construct. Acta Hortic 575:171–176CrossRefGoogle Scholar
  26. Malony M, Boresjza-WysockaJohn EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus x Domestica) without use of a selectable marker gene. Tree Genetics & Genomes 6(3):423–433Google Scholar
  27. Menzel CM, Huang X, Liu C (2005) Cultivars and plant improvement. In: Menzel CM, Waite GK (eds) Litchi and longan: botany, production and uses. CABI, Wallingford, pp 59–86CrossRefGoogle Scholar
  28. Meyerowitz EM, Smyth DR, Bowman JL (1989) Abnormal flowers and pattern formation in floral development. Development 106:209–217Google Scholar
  29. Munoz M, Seemann P, Jara G, Riegel R (2009) Influence of vessel type, physical state of medium and temporary immersion on the micropropagation of three Rhodophiala species. Chil J Agric Res 69:581–587CrossRefGoogle Scholar
  30. Ouyang S, Zheng X et al (1985) T-DNA transfer and tumor formation induced by Agrobacterium tumefaciens on Litchi chinensis. Acta Genet Sin 12:42–45Google Scholar
  31. Padilla G, Jose AP, Perea-Arango I, Moon PA, Miguel AG-L, Borges AA, Exposito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell De Biol—Plant 49:510–519. doi: 10.1007/s11627-013-9533-9 CrossRefGoogle Scholar
  32. Pena L, Seguin A (2001) Recent advances in the transgenic transformation of trees. Trends Biotechnol 19:500–506CrossRefPubMedGoogle Scholar
  33. Petri C, Burgos L (2005) Transformation of fruit trees useful breeding tool or continued future prospect? Transgenic Res 14:1526CrossRefGoogle Scholar
  34. Piqueras A, Alburquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C et al (eds) Transgenic Crop Plants. Springer-Verlag, Berlin/HeidelbergGoogle Scholar
  35. Puchooa D (2004) Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. J Appl Hortic 6(1):11–15Google Scholar
  36. Raharjo SHT, Litz RE (2007) Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult 89:113–119CrossRefGoogle Scholar
  37. Sinha S, Das DK (2013) Transformation of litchi (Litchi chinensis Sonn.) With gly I + II gene leads to enhanced salt tolerance. IJBAF 1(11): 483–495Google Scholar
  38. Torrigiani P, Scaramagli S, Ziosi V, Mayer M, Biondi S (2005) Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate. J Plant Physiol 162:559–571. CrossRefPubMedGoogle Scholar
  39. Wong WS, Li GG, Ning W, Xu ZF, Hsaio WLW, Zhang LY, Li N (2001) Repression of chilling induced ACC accumulation in transgenic citrus by overproduction of antisense 1-aminocyclopropane-1-car- boxylate synthase RNA. Plant Sci 161:969–977CrossRefGoogle Scholar
  40. Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114:143–150CrossRefGoogle Scholar
  41. Yao J-L, Dong YH, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci U S A 98:1306–1311CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yu CH, Chen ZG, Lu LX, Lin JW (2000) Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Organ Cult 61:51–55CrossRefGoogle Scholar
  43. Yun Z, Qu H, Wang H, Zhu F, Zhang Z, Duan X, Jiang Y (2016) Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage. Sci Report 6:19356. CrossRefGoogle Scholar
  44. Ziv A, Halvey AH (1983) Control of oxidative burrowing and in vitro propagation of Strelitzia reginae. Hortic Sci 119:315–319Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Anjana Rustagi
    • 1
    Email author
  • Garima Malik
    • 1
  • Samira Chugh
    • 1
  • Shachi Agrawal
    • 1
  • Shashi Shekhar
    • 2
  • Nishakant Pandey
    • 2
  1. 1.Department of BotanyGargi CollegeNew DelhiIndia
  2. 2.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations