Skip to main content

Genetic Manipulation of Litchi for Crop Improvement: Challenges and Possibilities

  • Chapter
  • First Online:
The Lychee Biotechnology

Abstract

Litchi fruit crop comprises a lucrative commodity, which significantly contributes to the economic sustainability and livelihood for millions of people in Southeast Asia. Litchi fruit is accepted globally due to its unique taste, rich nutritional value, and exotic aroma and flavor. However, its commercial production and geographical expansion remain constrained due to several reasons that include limited availability of suitable cultivars, irregular flowering, poor production, and unpredictable weather which limits pollination during blooming. At the present juncture, there is a lack of optimized breeding system for crop improvement. In vitro plant regeneration has been harnessed to give an impetus to production of litchi, but litchi being a recalcitrant plant and restrictions in explant collection slows the progress in this regard. Genetic transformation along with omics approach and biotechnology tools may immensely help in development of desired cultivars of litchi. In the present chapter, we discuss the challenges and possibilities of genetic manipulation of litchi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin MN, Razzaque MA (1995) Induction of somatic embryogenesis in the cultures of zygotic embryos of lychee. Bangladesh J Bot 24:25–29

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan A, Scorza R (2007) Effects of a peach antisense ACC oxidase gene on plum fruit quality. In: Litz RE, Scorza R (eds) Proceedings of the international symposium on biotechnology of temperate fruit crops and tropical species. Acta Horticulturae, vol 738. International Society for Horticultural Science, Leuven, pp 567–573

    Google Scholar 

  • Ceng LH (2003) Agrobacterium tumefaciens-mediated genetic transformation of litchi (Litchi chinensis Sonn.) With LEAFY Gene. Global Thesis.com ID: 1103360065956300

  • Cruz-Hernández A, Litz RE (1997) Transformation of mango somatic embryos. Acta Hort 455: 292–298

    Google Scholar 

  • Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv Bedana). Curr Trends Biotechnol Pharm 4(3):820–833

    CAS  Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tissue Organ Cult 109(2). doi:10.1007/s11240-011-0097-2

  • Das DK, Shiva Prakash N, Bhalla-Sarin N (1999) Multiple shoot induction and plant regeneration in litchi (Litchi chinensis Sonn.). Plant Cell Rep 18:691–695

    Article  CAS  Google Scholar 

  • Das DK, Prabhakar M, Kumari D, Kumari N (2016) Expression of SAMDC gene for enhancing the shelf life for improvement of fruit quality using biotechnological approaches into litchi (Litchi chinensis Sonn.) cultivars. Adv Biosci Biotechnol 07:300–310. doi:10.4236/abb.2016.76028

    Article  Google Scholar 

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘LaFrance’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    Article  CAS  Google Scholar 

  • Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruit crops. In Vitro Cell Dev Biol Plant 40:442–449

    Article  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering K, Hodge S, Golbik R, Prasher D (1996) The green fluorescent protein gene must be modified for use as a vital marker in Arabidopsis thaliana. Plant Physiol 111:17

    Google Scholar 

  • Jackson MB, Abbott AJ, Belcher AJ, Hall KC (1991) Ventilation in plant tissue cultures effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explants development. Ann Bot 67:229–237

    Article  CAS  Google Scholar 

  • Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Bremont JF, Oscar A, Ruiz OA, Rodriguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821. http://dx.doi.org/10.1016/j.plaphy.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  • Kantharanjah AS, Mc Conchie CA, Dodd WA (1992) In vitro embryo culture and induction of multiple shoots in lychee. Ann Bot 70:153–156

    Article  Google Scholar 

  • Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci U S A 98:14156–14161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1: a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Kumar M, Prakash NS, Prasad US, Sarin NB (2006a) A novel approach of regeneration from nodal explants of field grown litchi (Litchi chinensis Sonn.) fruit trees. J Plant Sci 5(3):321–327

    Google Scholar 

  • Kumar M, Gupta M, Shrivastava D, Prasad M, Prasad US, Sarin NB (2006b) Genetic relatedness among Indian litchi accessions (Litchi chinensis Sonn.) by RAPD markers. Int J Agric Res 1:390–400

    Article  CAS  Google Scholar 

  • Lehti-Shiu MD, Adamczyk BJ, Fernandez DE (2005) Expression of MADS-box genes during the embryonic phase in Arabidopsis. Plant Mol Biol 58:89–107

    Article  CAS  PubMed  Google Scholar 

  • Li-hui Z, Liu-xin L (2001) Transformation and transgenic plantlets regeneration of litchi (Litchi chinensis Sonn.) with LEAFY gene. J Fujian Agric Univ 30(4):563–564. (in Chinese)

    Google Scholar 

  • Litz RE (1988) Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. J Plant Physiol 132:190–193

    Article  CAS  Google Scholar 

  • Magdalita PM, Laurena AC, Yabut-Perez BM, Mendoza EMT, Villegas VN, Botella JR (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase anti- sense construct. Acta Hortic 575:171–176

    Article  CAS  Google Scholar 

  • Malony M, Boresjza-WysockaJohn EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus x Domestica) without use of a selectable marker gene. Tree Genetics & Genomes 6(3):423–433

    Google Scholar 

  • Menzel CM, Huang X, Liu C (2005) Cultivars and plant improvement. In: Menzel CM, Waite GK (eds) Litchi and longan: botany, production and uses. CABI, Wallingford, pp 59–86

    Chapter  Google Scholar 

  • Meyerowitz EM, Smyth DR, Bowman JL (1989) Abnormal flowers and pattern formation in floral development. Development 106:209–217

    Google Scholar 

  • Munoz M, Seemann P, Jara G, Riegel R (2009) Influence of vessel type, physical state of medium and temporary immersion on the micropropagation of three Rhodophiala species. Chil J Agric Res 69:581–587

    Article  Google Scholar 

  • Ouyang S, Zheng X et al (1985) T-DNA transfer and tumor formation induced by Agrobacterium tumefaciens on Litchi chinensis. Acta Genet Sin 12:42–45

    Google Scholar 

  • Padilla G, Jose AP, Perea-Arango I, Moon PA, Miguel AG-L, Borges AA, Exposito-Rodríguez M, Litz RE (2013) Agrobacterium tumefaciens-mediated transformation of ‘Brewster’ (‘Chen Tze’) litchi (Litchi chinensis Sonn.) with the PISTILLATA cDNA in antisense. In Vitro Cell De Biol—Plant 49:510–519. doi:10.1007/s11627-013-9533-9

    Article  CAS  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the transgenic transformation of trees. Trends Biotechnol 19:500–506

    Article  CAS  PubMed  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees useful breeding tool or continued future prospect? Transgenic Res 14:1526

    Article  Google Scholar 

  • Piqueras A, Alburquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C et al (eds) Transgenic Crop Plants. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Puchooa D (2004) Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. J Appl Hortic 6(1):11–15

    CAS  Google Scholar 

  • Raharjo SHT, Litz RE (2007) Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult 89:113–119

    Article  Google Scholar 

  • Sinha S, Das DK (2013) Transformation of litchi (Litchi chinensis Sonn.) With gly I + II gene leads to enhanced salt tolerance. IJBAF 1(11): 483–495

    Google Scholar 

  • Torrigiani P, Scaramagli S, Ziosi V, Mayer M, Biondi S (2005) Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate. J Plant Physiol 162:559–571. http://dx.doi.org/10.1016/j.jplph.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Hsaio WLW, Zhang LY, Li N (2001) Repression of chilling induced ACC accumulation in transgenic citrus by overproduction of antisense 1-aminocyclopropane-1-car- boxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114:143–150

    Article  CAS  Google Scholar 

  • Yao J-L, Dong YH, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci U S A 98:1306–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CH, Chen ZG, Lu LX, Lin JW (2000) Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Organ Cult 61:51–55

    Article  CAS  Google Scholar 

  • Yun Z, Qu H, Wang H, Zhu F, Zhang Z, Duan X, Jiang Y (2016) Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage. Sci Report 6:19356. http://doi.org/10.1038/srep19356

    Article  CAS  Google Scholar 

  • Ziv A, Halvey AH (1983) Control of oxidative burrowing and in vitro propagation of Strelitzia reginae. Hortic Sci 119:315–319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rustagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rustagi, A., Malik, G., Chugh, S., Agrawal, S., Shekhar, S., Pandey, N. (2017). Genetic Manipulation of Litchi for Crop Improvement: Challenges and Possibilities. In: Kumar, M., Kumar, V., Prasad, R., Varma, A. (eds) The Lychee Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3644-6_11

Download citation

Publish with us

Policies and ethics