Skip to main content

Climate Mediated Changes in Permafrost and Their Effects on Natural and Human Environments

  • Chapter
  • First Online:

Abstract

Permafrost is one of the major sink of terrestrial carbon. However, the changing climate exerts an enormous pressure making the permafrost a potential source that can emit carbon to atmosphere. This review covers main concepts of permafrost and discuss in depth about the interactions between permafrost and other natural systems under the scenarios of climate change. The main attention focuses on the northern circumpolar where nearly 25% of the land mass is covered by continuous or discontinuous permafrost and is undergoing a tremendous change. Human reaction plays a crucial role in this race between carbon control and warming planet. Anthropogenic activities will thus be taken into consideration in this regard. The purpose of this work is to finally give a clear knowledge scheme on current situation of permafrost and its study frontier in terms of climate change and adaptive management. Future directions of related research will also be suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166

    Google Scholar 

  • Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. AMBIO J Human Environ 35(4):169–175

    Article  CAS  Google Scholar 

  • Bockheim J, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81(3):281–293

    Article  Google Scholar 

  • Carter JR. Ice formations diurnal freeze-thaw cycles. Retrieved on 14 January 2017, from My World of Ice. http://my.ilstu.edu/~jrcarter/ice/diurnal/

  • Chen F, Lin H, Zhou W, Hong T, Wang G (2013) Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens Environ 138:10–18

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(4). doi:10.1029/2003GL018680

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  CAS  Google Scholar 

  • Davis TN (2001) Permafrost: a guide to frozen ground in transition. University of Alaska Press, Fairbanks, AK

    Google Scholar 

  • Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. EOS Trans Am Geophys Union 92(9):73–74

    Article  Google Scholar 

  • Heintz AE, Garutt VE (1965) Determination of the absolute age of the fossil remains of mammoth and wooly rhinoceros from permafrost in Siberia by help of radiocarbon. Nor Geol Tidsskr 45:73–79

    Google Scholar 

  • IPCC (2007) Mitigation of climate change. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2014) Climate Change 2014–Impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Jin HJ, Yu QH, Wang SL, Lü LZ (2008) Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol 53(3):317–333

    Article  Google Scholar 

  • Johansson M, Christensen TR, Akerman HJ, Callaghan TV (2006) What determines the current presence or absence of permafrost in the Tornetrask region, a sub-arctic landscape in Northern Sweden? Ambio 35(4):190–197

    Article  Google Scholar 

  • Koven CD et al (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci U S A 108(36):14769–14774

    Article  CAS  Google Scholar 

  • Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32(24). doi:10.1029/2005GL025080

  • Letterly A (2015) Permafrost and frozen ground assessment. Retrieved on 14 January 2017, from Global Cryosphere Watch. http://globalcryospherewatch.org/assessments/permafrost/2014/

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509

    Article  Google Scholar 

  • O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48(4). doi:10.1029/2010RG000326

  • Ozawa H, Kinosita S (1989) Segregated ice growth on a microporous filter. J Colloid Interface Sci 132(1):113–124

    Article  CAS  Google Scholar 

  • Peddle DR, Franklin SE (1993) Classification of permafrost active layer depth from remotely sensed and topographic evidence. Remote Sens Environ 44(1):67–80

    Article  Google Scholar 

  • Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RD, Buigues B et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311(5759):392–394

    Article  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33(8):1215–1221

    Article  CAS  Google Scholar 

  • Romanovsky VE, Osterkamp T, Shender N, Balobaev V (2001) Permafrost temperature dynamics along the East Siberian and an Alaskan Transect (extended abstract). Tōhoku Geophys J 36(2):224–229

    Google Scholar 

  • Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21(2):136–155

    Article  Google Scholar 

  • Romanovsky VE, Smith SL, Christiansen HH, Shiklomanov NI, Streletskiy DA, Drozdov DS, Malkova GV, Oberman NG, Kholodov AL, Marchenko SS (2015) Terrestrial permafrost [in ‘state of the climate in 2014’]. Bull Am Meteorol Soc 96:S139–S141

    Article  Google Scholar 

  • Schaefer K, Lantuit H, Romanovsky VE, Schuur EA, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Lett 9(8):085003

    Article  Google Scholar 

  • Schirrmeister L, Siegert C, Kuznetsova T, Kuzmina S, Andreev A, Kienast F, Bobrov A (2002) Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quat Int 89(1):97–118

    Article  Google Scholar 

  • Schuur EA, Abbott B (2011) Climate change: high risk of permafrost thaw. Nature 480(7375):32–33

    Article  CAS  Google Scholar 

  • Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714

    Article  Google Scholar 

  • Schuur E, Abbott B, Bowden W, Brovkin V, Camill P, Canadell J, Chanton J, Chapin F III, Christensen T, Ciais P (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Clim Chang 119(2):359–374

    Article  CAS  Google Scholar 

  • Sellmann PV (1967) Geology of the USA CRREL permafrost tunnel, Fairbanks, Alaska (No. CRREL-TR-199). Cold Regions Research and Engineering Lab, Hanover, NH

    Google Scholar 

  • Shiklomanov NI, Streletskiy DA, Nelson FE (2012) Northern hemisphere component of the global circumpolar active layer monitoring (CALM) program. In: Proceedings of 10th international conference on permafrost, vol 1, pp 377–382

    Google Scholar 

  • Slaughter CW, Racine CH, Walker DA, Johnson LA, Abele G (1990) Use of off- road vehicles and mitigation of effects in Alaska permafrost environments: a review. Environ Manag 14(1):63–72

    Article  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54(4):779–791

    Article  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308(5727):1429

    Article  CAS  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34(9). doi:10.1029/2007gl029703

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110(3–4):1005–1027

    Article  Google Scholar 

  • Tarnocai C, Canadell J, Schuur E, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23(2)

    Google Scholar 

  • United States Bureau of Land Management (1986) Arctic National Wildlife Refuge, Alaska, coastal plain resource assessment: report and recommendation to the Congress of the United States and legislative environmental impact statement: draft. US Department of the Interior

    Google Scholar 

  • Vaks A, Gutareva OS, Breitenbach SFM, Avirmed E, Mason AJ, Thomas AL, Henderson GM (2013) Speleothems reveal 500,000-year history of Siberian permafrost. Science 340(6129):183–186

    Article  CAS  Google Scholar 

  • Wan R, Booshehrian A (2015) Permafrost degradation within continuous permafrost zones due to mining disturbances in Canadian Northern Regions. Department of Civil Engineering, University of Calgary, Calgary

    Google Scholar 

  • White JW, Alley RB, Archer DE, Barnosky AD, Dunlea E, Foley J, Smith LC (2014) Abrupt impacts of climate change: anticipating surprises. In: EGU general assembly conference abstracts, vol 16, p 17028

    Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300(5620):791–795

    Article  CAS  Google Scholar 

  • Woo MK (1986) Permafrost hydrology in North America. Atmos-Ocean 24(3):201–234

    Article  Google Scholar 

  • Zollinger B, Alewell C, Kneisel C, Meusburger K, Brandova D, Kubik P, Schaller M, Ketterer M, Egli M (2015) The effect of permafrost on time-split soil erosion using radionuclides (Cs-137, Pu239+240, meteoric Be-10) and stable isotopes (delta C-13) in the eastern Swiss Alps. J Soils Sediments 15(6):1400–1419

    Article  CAS  Google Scholar 

  • Zoltai S (1978) Ecological land classification projects in northern Canada and their use in decision making. Applications of ecological (biophysical) land classification in Canada. In: Proceedings of the second meeting, Canada Committee on Ecological (biophysical) Land Classification

    Google Scholar 

  • Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Chang RYW (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci U S A 113(1):40–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lin, M., Biswas, A. (2017). Climate Mediated Changes in Permafrost and Their Effects on Natural and Human Environments. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_22

Download citation

Publish with us

Policies and ethics