Skip to main content

Will the Traditional Agriculture Pass into Oblivion? Adaptive Remote Sensing Approach in Support of Precision Agriculture

  • Chapter
  • First Online:

Abstract

Is it a time for replacing the traditional agricultural system by adaptive remote sensing (RS)? Yes, of course it is. This chapter has focused on developing four adaptive models to predict and monitor soil-plant properties using RS. First, an image and point spectroscopic model to replace the current soil chemical analysis methods, which are slow, complicated, or inaccurat was developed. Spectroscopy has opened a new era in which outdated conventional soil analyses are being left behind. Spectroscopy can be utilized to precisely predict some soil (e.g. salinity, gypsum, heavy metals) properties, making it an important tool in precision farming.

Second, adaptive and coactive neuro-fuzzy inference system for estimation of difficult-to-measure soil (phosphorus and soil cation exchange capacity, CEC) properties was proposed. The conventional procedures for CEC measurement demand longer time and it is difficult to maintain their stability during long-term experiments.

Third, a real-time adaptive sensor network technology for land degradation prediction was implemented. Advancement in remote sensors and GIS technology has offered an approach to extremely modern early warning systems for observing most environmental hazards. Issuing appropriate warning systems are crucial to alleviate the environmental hazards impact on population, environment, and the economy. Early warning information system (EWIS) can be utilized for the early identification, observing, and prediction of soil salinization, desertification, and water content for farming computerization.

Finally, adaptive thermal sensing technique to support precision agriculture was suggested. Thermal imaging has shown potential to assist with many aspects of soil and irrigation management. By such methods, thermal information about a large area can be obtained simultaneously and at times see things that otherwise may be hidden. Thermal infrared remote sensing can be used to soil salinity detection, water resources monitoring, and soil surface temperature mapping. This technology is a non-intrusive, non-contact, and non-destructive method used to predict thermal properties of soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashraf MA, Maah MJ, Yusoff I (2014) Soil contamination, risk assessment and remediation. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination. INTECH, Rijeka, pp 3–56. doi:10.5772/57287

    Google Scholar 

  • Ata R, Kocyigit Y, Kocyigit Y (2010) An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Syst Appl 37:5454–5460

    Article  Google Scholar 

  • Atashkari K, Nariman-Zadeh N, Pilechi A, Jamali A, Yao X (2005) Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms. Int J Therm Sci 44:1061–1071. doi:10.1016/j.ijthermalsci.2005.03.016

    Article  Google Scholar 

  • Azamathulla HM, Chang CK, Ghani AA, Ariffin J, Zakaria NA, Abu Hasan Z (2009) An ANFIS-based approach for predicting the bed load for moderately sized rivers. J Hydro Environ Res 3:35–44

    Article  Google Scholar 

  • Barnes EW, Sudduth KA, Hummel JW, Lesch SM, Corwin DL, Yang C, Daughtry CST, Bausch WC (2003) Remote- and ground-based sensor techniques to map soil properties. Photogramm Eng Remote Sens 69:619–630

    Article  Google Scholar 

  • Ben-Dor E (2002) Quantitative remote sensing of soil properties. Adv Agron 75:173–243

    Article  CAS  Google Scholar 

  • Ben-Dor E, Chabrillat S, Demattê J, Taylor G, Hill J, Whiting M, Sommer S (2009) Using imaging spectroscopy to study soil properties. Remote Sens Environ 113:S38–S55

    Article  Google Scholar 

  • Bocco M, Willington E, Arias M (2010) Comparison of regression and neural networks models to estimate solar radiation. Chil J Agric Res 70:428–435

    Article  Google Scholar 

  • Borenstein A, Linker R, Shmulevich I, Shaviv A (2006) Determination of soil nitrate and water content using attenuated total reflectance spectroscopy. Appl Spectrosc 60:1267–1272

    Article  CAS  Google Scholar 

  • Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

    Article  CAS  Google Scholar 

  • Cabena PH, Stadler R, Verhees J, Zanasi A (1998) Discovering data mining: from concept to implementation. IBM, New Jersey, p 195

    Google Scholar 

  • Callicott JB, Crowder LB, Mumford K (1999) Current normative concepts in conservation. Conserv Biol 13:22–35

    Article  Google Scholar 

  • Chowdary VM, Vinu Chandran R, Bothale NN, Bothale RV, Srivastava YK, Ingle P, Ramakrishnan D, Dutta D, Jeyaram A, Sharma JR, Ravindra S (2008) Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric Water Manag 95:754–766. doi:10.1016/j.agwat.2008.02.009

    Article  Google Scholar 

  • Coello Coello C, Christiansen A (2000) Multiobjective optimization of trusses using genetic algorithms. Comput Struct 75:647–660. doi:10.1016/S0045-7949(99)00110-8

    Article  Google Scholar 

  • Dembilio Ó, Jacas JA, Llácer E (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (Col. Curculionidae). J Appl Entomol 33:565–567

    Article  Google Scholar 

  • Du C, Linker R, Shaviv A (2007) Characterization of soils using photoacoustic mid-infrared spectroscopy. Appl Spectrosc 61:1063–1067

    Article  CAS  Google Scholar 

  • Du C, Linker R, Shaviv A (2008a) Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma 143:85–90

    Article  CAS  Google Scholar 

  • Du C, Zhou J, Wang H, Chen X, Zhu A, Zhang J (2008b) Determiantion of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vib Spectrosc 49(1):32–37. doi:10.1016/j.vibspec.2008.04.009

    Article  Google Scholar 

  • EBTP (2015) European Biofuels Technology Platform. Oil crops for production of advanced biofuels. http://www.biofuelstpeu/oil_crops.html. Retrieved 28 Sept 2015

  • Ekici BB, Aksoy UT (2011) Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst Appl 38:5352

    Article  Google Scholar 

  • ELD I (2015) The value of land: prosperous lands and positive rewards through sustainable land management. www.eld-initiative.org

  • Enayatifar R, Sadaei HJ, Abdullah AH, Gani A (2013) Imperialist competitive algorithm combined with refined high-order weighted fuzzy time series for short term load forecasting. Energ Conver Manage 76:1104–1116

    Article  Google Scholar 

  • Faleiro JR (2005) Insight into the management of red palm weevil Rhynchophorus ferrugineus Olivier: based on experiences on coconut in India and date palm in Saudi Arabia, Fundación Agroalimed. Jorn Int Picudo Rojo Palmeras 27-29:35–57

    Google Scholar 

  • Faleiro JR (2006) A review on the issues and management of red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26:135–154

    CAS  Google Scholar 

  • Farlow S (1984) Self-organizing method in modeling: GMDH type algorithm. Marcel Dekker, New York

    Google Scholar 

  • Firat M, Gungor M (2007) River flow estimation using adaptive neuro fuzzy inference system. Math Comput Simul 75:87–96

    Article  Google Scholar 

  • Fuentes M, Hidalgo C, Gonzalez-Martin I, Hernandez-Hierro JM, Govaerts B (2012) NIR spectroscopy: an alternative for soil analysis. Commun Soil Sci Plant Anal 43:346–356. doi:10.1080/00103624.2012.641471

    Article  CAS  Google Scholar 

  • Gago J, Martinez-Nunez L, Landin M, Gallego PP (2010) Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J Plant Physiol 167:23–27

    Article  CAS  Google Scholar 

  • Ghaemi M, Astaraei AR, Sanaeinejad SH, Zare H (2013) Using satellite data for soil cation exchange capacity studies. Int Agrophys 27:409–417

    Article  Google Scholar 

  • Ghanbarian-Alavijeh B, Hunt A (2012) Estimation of soil–water retention from particle-size distribution: fractal approaches. Soil Sci 177:321–326. doi:10.1097/SS.0b013e3182499910

    Article  CAS  Google Scholar 

  • Ghorbani K, Khalili A, Alavipanah SK, Nakhaezadeh G (2010) Comparative study of the meteorological drought indices (SPI and SIAP) using data mining method (case study of Kermanshah Province). J Water Soil 24:417–426

    Google Scholar 

  • Gleditsch NP (2012) Whither the weather? Climate change and conflict. J Peace Res 49(1):3–9

    Article  Google Scholar 

  • Gmur S, Daniel V, Darlene Z, Monika ML (2012) Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees. Sensors 12(8):10639–10658

    Article  CAS  Google Scholar 

  • Gomez RB (2000) The power of hyperspectral technology. In: 2nd international conference on earth

    Google Scholar 

  • Grasso V (2005) Seismic early warning systems: procedure for automated decision making. Università degli Studi di Napoli Federico II, 104 pp

    Google Scholar 

  • Grasso V (2012) Early warning systems: state-of-art analysis and future directions. Draft report, United Nations Environmental Programme, 66 pp

    Google Scholar 

  • Hill BE (2009) Soil sample handling for routine analysis of plant-available soil potassium. Unpublished MS thesis library, Iowa State University, Ames

    Google Scholar 

  • Holecz F, Heimo C, Moreno J, Goussard J, Fernandez D, Rubio JL (2003) Desertification—a land degradation support service. IEEE 3:1490–1492

    Google Scholar 

  • Huang Y, Lan Y, Thomson SJ, Fang A, Hoffmann WC, Lacey RE (2010) Development of soft computing and applications in agricultural and biological engineering. Comput Electron Agric 71:107–127

    Article  Google Scholar 

  • IEEE (1999) Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band. IEEE Standard 80211b, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • IEEE (2002) Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPANs). IEEE Standard 802.15.1, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • IEEE (2003) Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Standard 802154, The Institute of Electrical and Electronics Engineers, New York

    Google Scholar 

  • Iqbal J, Pathak G, Gorai AK (2014) Development of hierarchical fuzzy model for ground water vulnerability to pollution assessment. Arab J Geosci 7(4):1683–1695

    Google Scholar 

  • Jahn BR, Linker R, Upadhyaya SK, Shaviv A, Slaughter DC, Shmulevich I (2006) Mid infrared spectroscopic determination of soil nitrate content. Biosyst Eng 94:505–515

    Article  Google Scholar 

  • Jang J, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Johnson BL (1999) The role of adaptive management as an operational approach for resource management agencies. Conserv Ecol 3(2):8 http://www.consecol.org/vol3/iss2/art8/

    Article  Google Scholar 

  • Jonkman SN (2007) Loss of life estimation in flood risk assessment. Theory and applications. PhD thesis, Delft University of Technology

    Google Scholar 

  • Keshavarzi A, Fereydoon S, Omran ESE, Iqbal M (2015) A neural network model for estimating soil phosphorus using terrain analysis. Egypt J Remote Sens Space Sci 18(2):127–135. doi:10.1016/j.ejrs.2015.06.004

    Google Scholar 

  • Khalid OAM, Eldoush AKT, Tag EM, Omar A, Sidahmed A, FakhrEldeen A, Hatim GM (2011) Application of plant based extracts for the control the green pit scale insect (Asterolicaniumphoenicis Rao.) with yield enhancement on date palm. Emir J Food Agric 23(5):404–412

    Google Scholar 

  • Kisi O, Haktanir T, Ardiclioglu M, Ozturk O, Yalcin E, Uludag S (2009) Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Adv Eng Softw 40:438–444

    Article  Google Scholar 

  • Kolen B, Kutschera G, Helsloot I (2009) A comparison between the Netherlands and Germany of evacuation in case of extreme flooding. COST09, Paris

    Google Scholar 

  • Kurnaz S, Cetin O, Kaynak O (2010) Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst Appl 37:1229–1234

    Article  Google Scholar 

  • Linker R, Shaviv A (2009) Emerging techniques for soil analysis via mid-infrared spectroscopy. Geophysical Research Abstracts 11 (EGU2009-877)

    Google Scholar 

  • Linker R, Shmulevich I, Kenny A, Shaviv A (2005) Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere 61:652–658

    Article  CAS  Google Scholar 

  • Linker R, Weiner M, Shmulevich I, Shaviv A (2006) Nitrate determination in soil pastes using FTIR-ATR mid-infrared spectroscopy: Improved accuracy via soil identification. Biosyst Eng 94:111–118

    Article  Google Scholar 

  • MacLeod A, Head J, Gaunt A (2004) An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Prot 23(7):601–610

    Article  Google Scholar 

  • Mahlein A (2016) Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Am Phytopathol Soc 100:241

    Google Scholar 

  • Mahmud AI, João F, Eleonore RAV (2015) Red palm weevil (Rhynchophorusferrugineus Olivier, 1790): threat of palms. J Biol Sci 15(2):56–67

    Article  Google Scholar 

  • Mallick J (2006) Satellite based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. Master’s thesis, University of Twente, The Netherlands

    Google Scholar 

  • Merdun H, Meral OC, Apan RM (2006) Comparison of artificial neural network and regression pedotransfer functions for predict of water retention and saturated hydraulic conductivity. Soil Tillage Res 90:108–116

    Article  Google Scholar 

  • Minar MH, Hossain B, Shamsuddin MD (2013) Climate change and coastal zone of Bangladesh: vulnerability, resilience and adaptability. Middle-East J Sci Res 13(1):114–120. doi:10.5829/idosi.mejsr.2013.13.1.64121

    Google Scholar 

  • Minasny B, McBratney AB (2002) The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci Soc Am J 66:352–361

    CAS  Google Scholar 

  • Minasny B, Tranter G, McBratney A, Brough D, Murphy B (2009) Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma 153:155–162

    Article  CAS  Google Scholar 

  • Ministry of Transport PWAWM (2008) Emergency plan “extreme water level and storm surge”. Guideline for a national approach, (in Dutch), Ministry of Public Works and Water Management and Ministry of Transport: Den Haag

    Google Scholar 

  • Mogaji KA, Lim HS, Abdullah K (2014) Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arab J Geosci 7(4):1671–1683

    Google Scholar 

  • Mohandes M, Rehman S, Rahman SM (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy. doi:10.1016/j.apenergy.2011.04.015

    Google Scholar 

  • Mouazen AM, Maleki MR, De Baerdemaeker J, Ramon H (2007) On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil Tillage Res 93:13–27

    Article  Google Scholar 

  • Mozib ME, El-Shafie HA (2013) Effect of red palm weevil, Rhynchophorusferrugineus (Olivier) infestation on temperature profiles of date palm tree. J Entomol Nematol 5(6):77–83

    Article  Google Scholar 

  • Naes T, Isaksson T, Fearn T, Davies T (2004) A user-friendly guide to multivariate calibration and classification. NIR, Chichester

    Google Scholar 

  • Nakash J, Osam Y, Kehat M (2000) A suggestion to use dogs for detecting red palm weevil (Rhynchophorus ferrugineus) infestation in date palm in Israel. Phytoparasitica 28:153–154

    Article  Google Scholar 

  • Nawar S, Buddenbaum H, Hill J (2014) Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy: a case study from Egypt. Arab J Geosci 8:5127. doi:10.1007/s12517-014-1580-y

    Article  Google Scholar 

  • Neyshaburi M, Bayat H, Mohammadi K, Nariman-Zadeh N, Irannejad M (2015) Improvement in estimation of soil water retention using fractal parameters and multiobjective group method of data handling. Arch Agron Soil Sci 61(2):257–273. doi:10.1080/03650340.2014.924107

    Google Scholar 

  • Omran ESE (2008) Is soil science dead and buried? Future image in the world of 10 billion people. CATRINA 3(2):59–68

    Google Scholar 

  • Omran ESE (2012a) Evaluation of the Egyptian soil maps accuracy. Egypt J Soil Sci 52(1):71–95

    Google Scholar 

  • Omran ESE (2012b) On-the-go digital soil mapping for precision agriculture. Int J Remote Sens Appl 2(3):20–38

    Google Scholar 

  • Omran ESE (2012c) Detection of land-use and surface temperature change at different resolutions. J Geogr Inf Syst 4(3):189–203. doi:10.4236/jgis.2012.43024

    Google Scholar 

  • Omran ESE (2015) Remote estimation of vegetation parameters using narrowband sensor for precision agriculture in Arid environment. Egypt J Soil Sci:55(4):1-25

    Google Scholar 

  • Omran ESE (2016a) Inference model to predict heavy metals of Bahr El Baqar soils, Egypt using spectroscopy and chemometrics technique. Model Earth Syst Environ 2:200

    Article  Google Scholar 

  • Omran ESE (2016b) Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2016.1247952

    Google Scholar 

  • Omran ESE (2017) Simplified imaging spectroscopy for rapid spectral discrimination of soil minerals. Eurasian Soil Sci (forthcoming)

    Google Scholar 

  • Pachepsky Y, Rawls W, Gimenéz D, Watt J (1998) Use of soil penetration resistance and group method of data handling to improve soil water retention estimates. Soil Tillage Res 49:117–126. doi:10.1016/S0167-1987(98)00168-8

    Article  Google Scholar 

  • Petković D, Ćojbašić Ž (2012) Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability. Neural Comput Appl 21(8):2065–2070

    Article  Google Scholar 

  • Petković D, Issa M, Pavlović ND, Zentner L, Ćojbašić Ž (2012) Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst Appl 39:13295–13304

    Article  Google Scholar 

  • Plaza A, Benediktsson JA, Boardman J, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri JA, Marconicini M, Tilton JC, Trianni G (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110

    Article  Google Scholar 

  • Prakash A (2000) Thermal remote sensing: concepts, issues and applications. Int Arch Photogramm Remote Sens 33:239–243

    Google Scholar 

  • Quan RS, Liu M, Lu M, Zhang L, Wang J, Xu S (2010) Waterlog-ging risk assessment based on land use/cover change: a case study in Pudong New Area, Shanghai. Environ Earth Sci 61:1113–1121. doi:10.1007/s12665-009-0431-8

    Article  Google Scholar 

  • Qureshi AS, McCornick PG, Qadir M, Aslam Z (2008) Managing salinity and waterlogging in the Indus basin of Pakistan. Agric Water Manag 96(1):1–10

    Article  Google Scholar 

  • Rossel RAV, Behrens T (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158(1–2):46–54

    Article  CAS  Google Scholar 

  • Sabins FF (1996) Remote sensing: principles and interpretation, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Sawaya WN (2000) Proposal for the establishment of a regional network for date-palm in the Near East and North Africa. A draft for discussion, FAO/RNE

    Google Scholar 

  • Schaap MG, Bouten W (1996) Modelling water retention curves of sandy soils using neural networks. Water Resour Res 32:3033–3040

    Article  CAS  Google Scholar 

  • Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schuler G (2010) Retrieval of chlorophyll and nitrogen in Norway Spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Obs Geoinf 12:17–26. doi:10.1016/j.jag.2009.08.006

    Article  Google Scholar 

  • Shamshirband S, Anuar NB, Kiah MLM, Patel A (2013) An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Eng Appl Artif Intel 26(9):2105–2127

    Article  Google Scholar 

  • Singh R, Kianthola A, Singh TN (2012) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12:40–45

    Article  Google Scholar 

  • Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Construct Build Mater 24:709–718

    Article  Google Scholar 

  • Stenberg B, Viscarra Rossel R, Mouazen AM, Wetterlind J (2010) Visible and near infrared spectroscopy in soil science. Adv Agron 107:163–215

    Article  CAS  Google Scholar 

  • Stevens A, van Wesemael B, Bartholomeus H, Rosillon D, Tychon B, Ben-Dor E (2008) Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 144:395–404

    Article  CAS  Google Scholar 

  • Summers D (2009) Discriminating and mapping soil variability with hyperspectral reflectance data. PhD thesis, Faculty of Science, School of Earth and Environmental Science, Adelaide University

    Google Scholar 

  • Sunil K, Sinha M, Wang C (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26:47–64

    Article  Google Scholar 

  • Tagaki T, Sugeno M (1985) Fuzzy identification of systems and its applications to modelling and control. IEEE Trans Syst Man Cybern 15:116–132

    Article  Google Scholar 

  • Tracey JA, Zhu J, Crooks KR (2011) Modeling and inference of animal movement using artificial neural networks. Environ Ecol Stat 18:393–410

    Article  Google Scholar 

  • Turan NG, Mesci B, Ozgonene O (2011) The use of artificial neural networks (ANN) for modelling of adsorption of Cu (II) from industrial leachate by pumice. Chem Eng J 171:1091–1097

    Article  CAS  Google Scholar 

  • Ungaro F, Calzolari C, Busoni E (2005) Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of north Italy: water retention properties. Geoderma 124:293–317. doi:10.1016/j.geoderma.2004.05.007

    Article  Google Scholar 

  • Ungaro F, Calzolari C, Pistocchi A, Malucelli F (2014) Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: a hydropedological approach. J Hydrol Hydromech 62(1):33–42. doi:10.2478/johh-2014-0005

    Google Scholar 

  • van Noortwijk J, Barendregt A (2004) Available and necessary time for evacuation in case of possible flooding, (in Dutch) Lelystad: HKV lijn in water

    Google Scholar 

  • Viscarra Rossel RA, McGlynn RN, McBratney AB (2006) Determing the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 137:70–82

    Article  CAS  Google Scholar 

  • Wagner B, Tarnawski VR, Hennings V, Müller U, Wessolek G, Plagge R (2001) Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102(3–4):275–297

    Article  Google Scholar 

  • Weng YL, Gong P, Zhu ZL (2008) Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Can J Remote Sens 34:259–270

    Google Scholar 

  • Xu H, Zhu S, Ying Y, Jiang H (2006) Early detection of plant disease using infrared thermal imaging. Proc SPIE 6381:638110. doi:10.1117/12.685534

    Article  Google Scholar 

  • Yones MS, Arafat SM, Abou Hadid AF, Abd Elrahman HA, Dahi HF (2012) Determination of the best timing for control application against cotton leaf worm using remote sensing and geographical information techniques. Egypt J Remote Sens Space Sci 15:151–160

    Google Scholar 

  • Zadeh MH, Tangestani MH, Roldan FV, Yusta I (2013) Sub-pixel mineral mapping of a porphyry copper belt using eo-1 hyperion data. Adv Space Res 53:440–451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed Ewis Omran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Omran, ES.E. (2017). Will the Traditional Agriculture Pass into Oblivion? Adaptive Remote Sensing Approach in Support of Precision Agriculture. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_2

Download citation

Publish with us

Policies and ethics