Skip to main content

Impact of Agricultural Management Practices on Mycorrhizal Functioning and Soil Microbiological Parameters Under Soybean-Based Cropping Systems

  • Chapter
  • First Online:

Abstract

The use of modern agricultural techniques for enhanced production has been advocated, however, its impact on below ground microbial networks is overlooked and adversely affected. The abiotic stresses like temperature (heat, cold chilling/frost), water (drought, flooding/hypoxia), radiation (UV, ionizing radiation), chemicals (mineral deficiency/excess, pollutants heavy metals/pesticides, gaseous toxins), mechanical (wind, soil movement, submergence) are responsible for over 50% reduction in agricultural production. On the other hand, organic farming practices yield fruitful results. This has highlighted the emerging need of switching over to some eco-friendly agricultural practices which can enhance the growth of plant, improve soil quality, mitigate drought without having adverse impacts on environment. Rhizosphere which is the narrow zone surrounding the roots of plant (Hiltner 1904) contains microbial communities which have the potential to benefit plants. Arbuscular mycorrhizal fungi are obligate symbionts which form association with about 90% of the land plant species (Gadkar et al. 2001). However, agricultural practices like tillage, crop rotation, fallowing, organic farming, fertilizers, etc., influence the functioning of AMF in many ways. Soybean is rich in phytochemicals that are beneficial for human beings. The inoculation of soybean and some other crops including cereals, pulses, and other leguminous crops with AMF leads to an enhancement in abiotic stress tolerance, disease resistance, overall growth, soil carbon sequestration, nutrient uptake, etc. This chapter summarizes the overall impact of different agricultural practices on mycorrhiza and other soil microbial communities under soybean-based cropping system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alguacil MDM, Lozano Z, Campoy MJ, Roldán A (2010) Phosphorus fertisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol Biochem 42:1114–1122

    Article  CAS  Google Scholar 

  • Alkan N, Gadkar V, Yarden Q, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microbiol 72:4192–4199

    Article  CAS  Google Scholar 

  • Anderson JPE (1982) Soil respiration In: A.L. Page, R.H. Miller and D.R. Keeney (eds) Methods of soil analysis, Part 2: Chemical and microbiological properties. Agron Monogr 9:831–871

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Aseri GK, Tarafdar JC (2006) Fluorescein diacetate. A potential biological indicator for arid soils. Arid Land Res Mang 20:87–99

    Article  CAS  Google Scholar 

  • Augé Robert M (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294

    Article  CAS  Google Scholar 

  • Beauregard MS, Hamel C, Atul N, St-Arnaud M (2010) Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol 59:379–389

    Article  CAS  Google Scholar 

  • Bakhtiar Y, Miller D, Cavagnaro T, Smith S (2001) Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifos. Appl Soil Ecol 17:107–117

    Article  Google Scholar 

  • Baligar V, Fageria N, He Z (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 37:921–950

    Article  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765

    Article  CAS  Google Scholar 

  • Bell JM, Smith JL, Bailey VL, Bolton H (2003) Priming effect and C storage in semi arid no till spring rotation. Biol Fertil Soils 37:237–244

    CAS  Google Scholar 

  • Biermann B, Linderman RG (1981) Quantifying vesicular–arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88:253–261

    Article  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fertil Soils 48:911–922

    Article  Google Scholar 

  • Brito I, Goss M, de Carvalho M (2012) Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Use Manag 28:202–208

    Article  Google Scholar 

  • Brundrett MC, Juniper S (1995) Non-destructive assessment of spore germination of VAM fungi and production of pot cultures from single spores. Soil Biol Biochem 27:85–91

    Article  CAS  Google Scholar 

  • Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130

    Article  Google Scholar 

  • Buysens C, de Boulois HD, Declark S (2015) Do fungicides to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 25:277–288

    Article  CAS  Google Scholar 

  • Calonne M, Fontaine J, Debiane LF, Grandmougin A, Lounes-Hadj Sahraoui A (2011) Sideeffects of the sterol biosynthesis inhibitor fungicide, propiconazole, on a beneficial arbuscular mycorrhizal fungus. Commun Agric Appl Biol Sci 76:891–902

    CAS  Google Scholar 

  • Castillo CG, Rubio R, Rouanet JL, Borie F (2006) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83–92

    Article  Google Scholar 

  • Cerdeira AL, Gazziero DL, Duke SO, Matallo MB, Spadotto CA (2007) Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. J Environ Sci Health B Pestic. Food Contam Agric Wastes 42:539–549

    Article  CAS  Google Scholar 

  • Cheeke TE, Rosenstiel TN, Cruzan MB (2012) Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot 99:700–707

    Article  Google Scholar 

  • Cheeke TE, Pace BA, Rosenstiel TN, Cruzan MB (2011) The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms. FEMS Microbiol Ecol 75:304–312

    Article  CAS  Google Scholar 

  • Cheeke TE, Darby H, Rosenstiel TN, Bever JD, Cruzan MB (2014) Effect of Bacillus thuringiensis (Bt) maize cultivation history on arbuscular mycorrhizal fungal colonization, spore abundance and diversity, and plant growth. Agric Ecosyst Environ 195:29–35

    Article  Google Scholar 

  • Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Tillage Res 113:11–18

    Article  Google Scholar 

  • Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M (2012) Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE 7:47149

    Article  CAS  Google Scholar 

  • de Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH (2007) Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 51:185–194

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA Spec. Publ. 49. Soil Science Society America, Madison, WI, pp 247–271

    Google Scholar 

  • Dodd P, Jeffries P (1989) Effect of fungicides on three vesicular-arbuscular mycorrhizal fungi associated with winter wheat (Triticum aestivum L). Biol Fertil Soils 7:120–128

    Article  CAS  Google Scholar 

  • Douds DD, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular–arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52:111–118

    Article  Google Scholar 

  • Dubrovsky NM, Burow KR, Clark GM, Gronber JM, Hamilton PA et al (2010) The quality of our nation’s waters: nutrients in the nation’s streams and groundwater, 1992–2004. In: Circular 1350. U.S. Geological Survey, Reston, VA http://pubs.usgs.gov/circ/1350/

    Google Scholar 

  • Ferreira MC, Andrade DDS, de O Maria L, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  • Fontaine J, Grandmougin-Ferjani A, Glorian V, Durand R (2004) 24-Methyl/methylene sterols increase in monoxenic roots after colonization by arbuscular mycorrhizal fungi. New Phytol 163:159–167

    Article  CAS  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungaria M (2007) Microbiological parameters of indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Tillage Res 92:18–29

    Article  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungi colonization. Factors involved in host recognition. Plant Physiol 127:193–199

    Article  CAS  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Hendrix J, Guo B, Na Z (1995) Divergence of mycorrhizal fungal communities in crop production systems. Plant Soil 170:131–140

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol 98:393–418

    Google Scholar 

  • Gispert M, Emran M, Pardini G, Doni S, Ceccanti B (2013) The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma 202–203:51–61

    Article  CAS  Google Scholar 

  • González-Chávez MDCA, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil Tillage Res 106:285–293

    Article  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  Google Scholar 

  • Groth DE, Martinson CA (1983) Increased endomycorrhizal infection of maize and soybeans after soil treatment with metalaxyl. Plant Dis 67:1377–1378

    Article  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hassan F, Noorian MS, Jacobsen HJ (2012) Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices. GM Crop Food 3:301–309

    Article  Google Scholar 

  • Hassink J, Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61:131–139

    Article  CAS  Google Scholar 

  • Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508

    Article  CAS  Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2009) Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci Soc Am J 73:120–127

    Article  CAS  Google Scholar 

  • Hicks PM, Loynachan TE (1987) Phosphorus fertization reduces vesicular arbuscular mycorrhizal infection and changes nodule occupancy of field-grown soybean. Agron J 79:841–844

    Article  Google Scholar 

  • Higo M, Isobe K, Kang DJ, Ujiie K, Drijber RA, Ishii R (2010) Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13:74–79

    Article  Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Ishii R, Drijber RA, Jeske ES (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils 49:1085–1096

    Article  Google Scholar 

  • Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:59–78

    Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc B 363:543–555

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. Geol Soc London 266:89–115

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular -arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107

    Article  Google Scholar 

  • Jin H, Germida JJ, Walley FL (2013) Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Appl Soil Ecol 72:22–30

    Article  Google Scholar 

  • Johnson NC, Copeland PJ, Crookston RK, Pfleger FL (1992) Mycorrhizas: possible explanation for yield decline with continuous corn and soybean. Agric J 84:387–390

    Google Scholar 

  • Kabir Z, Halloran IPO, Hamel C (1999) Combined effects of soil disturbance and fallowing on plant and fungal components of mycorrhizal corn (Zea mays L.). Soil Biol Biochem 31:307–314

    Article  CAS  Google Scholar 

  • Karlen DL, Cambardella CA, Kovar JL, Colvin TS (2013) Soil quality response to long-term tillage and crop rotation practices. Soil Tillage Res 133:54–64

    Article  Google Scholar 

  • Kihara J, Martius C, Bationo A, Thuita M, Lesueur D, Hermann L, Amelung W, Vlek PLG (2012) Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Appl Soil Ecol 58:12–20

    Article  Google Scholar 

  • Knox OGG, Nehl DB, Mor T, Roberts GN, Gupta VVSR (2008) Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crop Res 109:57–60

    Article  Google Scholar 

  • Koide RT, Peoples MS (2012) On the nature of temporary yield loss in maize following canola. Plant Soil 360:259–269

    Article  CAS  Google Scholar 

  • Kundu S, Bhattacharyya R, Prakash V et al (2007) Carbon sequestration and relationship between carbon addition and storage under rainfed soybean – wheat rotation in a sandy loam soil of the Indian Himalayas. Soil Tillage Res 92:87–95

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impact on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutr Cycl Agroecosyst 49:243–253

    Article  CAS  Google Scholar 

  • Lavado RS, Porcelli CA, Alvarez R (2001) Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Tillage Res 62:55–60

    Article  Google Scholar 

  • Li L, Sun JH, Zhang FS, Li XL, Yang SC, Rengel Z (2001) Wheat/maize or wheat/soybean strip intercropping. I. Yield advantage and interspecific interactions on nutrients. Field Crop Res 71:123–137

    Article  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ectotoxicology 19:229–238

    Article  CAS  Google Scholar 

  • Liu W, Jiang S, Zhang Y, Yue S, Christie P, Murray PJ, Li X, Zhang J (2014) Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain. FEMS Microbiol Ecol 90:436–453

    Article  CAS  Google Scholar 

  • Lundquist EJ, Jackson LE, Scow KM, Hsu C (1999) Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biol Biochem 31:221–236

    Article  CAS  Google Scholar 

  • Martinez TN, Johnson NC (2010) Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high-input agroecosystems in arid environments. Appl Soil Ecol 46:300–306

    Article  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Pineiro G (2014) Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol Biochem 75:273–281

    Article  CAS  Google Scholar 

  • Mbuthia LW, Acosta-Martínez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N (2015) Long term tillage, cover crop, and fertization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem 89:24–34

    Article  CAS  Google Scholar 

  • McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN (2014) Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol Biochem 78:243–254

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH (1996) Mycorrhizae, phosphorus absorption, and yield of maize in response to tillage. Soil Sci Soc Am J 60:1856–1861

    Article  CAS  Google Scholar 

  • Michalson EL (1999) A history of conservation research in the Pacific Northwest. In: Michalson EL, Papendick RI, Carlson JE (eds) Conservation farming in the United States. The methods and accomplishments of the STEEP Program. CRC press, Boca Raton, pp 1–10

    Google Scholar 

  • Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Spec. Publ. No. 54. American Society Agronomy, Madison, WI, pp 29–44

    Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Ghaffarzadeh M, Prechac FG, Cruse RM (1994) Grain yield response of corn, soybean, and oat grown in a strip intercropping system. Am J Altern Agric 9:171–177

    Article  Google Scholar 

  • Monreal MA, Grant CA, Irvine RB, Mohr RM, Mclaren DL, Khakbazan M, Canada A (2011) Crop management effect on arbuscular mycorrhizae and root growth of flax. Can J Plant Sci 91:315–324

    Article  CAS  Google Scholar 

  • Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron J 92:1117–1124

    Article  CAS  Google Scholar 

  • Muchane MN, Jama B, Othieno C, Okalebo R, Odee D, Machua J, Jansa J (2010) Influence of improved fallow systems and phosphorus application on arbuscular mycorrhizal fungi symbiosis in maize grown in western Kenya. Agrofor Syst 78:139–150

    Article  Google Scholar 

  • Murillo-Williams A, Pedersen P (2008) Arbuscular mycorrhizal colonization response to three seed-applied fingicides. Agron J 100:795–800

    Article  Google Scholar 

  • Nakatani AS, Fernandes MF, de Souza RA, da Silva AP, dos Reis-Junior FB, Mendes IC, Hungaria M (2014) Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crop Res 162:20–29

    Article  Google Scholar 

  • Ngosong C, Gabriel E, Ruess L (2012) Use of the signature Fatty Acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J Lipids 2012:236807

    Article  CAS  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218

    Article  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  Google Scholar 

  • Olsson PA, Baath E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531–3538

    CAS  Google Scholar 

  • Paul EA (2007) Soil microbiology, ecology and biochemistry. Academic press Inc, San Diego, CA

    Google Scholar 

  • Paul EA, Juma NG (1981) Mineralization and immobilization of soil nitrogen by microorganisms. In: Clark FE, Rosswall T (eds) . Swedish Natural Science Research Council, Stockholm

    Google Scholar 

  • Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367

    Article  CAS  Google Scholar 

  • Prakash V, Bhattacharya R, Selvakumar G, Kundu S, Gupta HS (2007) Long term effects of fertilization on some soil properties under rainfed soybean-wheat cropping in the Indian Himalayas. J Plant Nutr Soil Sci 170:1–10

    Article  CAS  Google Scholar 

  • Reddy KN, Zablotowicz RM, Krutz LJ (2013) Corn and soybean rotation under reduced tillage management: impacts on soil properties, yield, and net return. Am J Plant Sci 04:10–17

    Article  Google Scholar 

  • Ren X (2006) Effect of Bt transgenic rice (KMD) on soil bacterial community and rhizosphere AM fungi. Dissertation, Zhejiang University. Hang Zhou, China

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 85:355–363

    Article  Google Scholar 

  • Robertson GP, Grandy AS (2006) Soil system management in temperate regions. In: Uphoff N, Ball AS, Fernandes E et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, FL, pp 27–39

    Chapter  Google Scholar 

  • Rohr JR, McCoy KA (2010) A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect 118:20–32

    Article  CAS  Google Scholar 

  • Roldan A, Salinas-Garcia JR, Alguacil MM, Diaz E, Caravaca F (2005) Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 129:178–185

    Article  CAS  Google Scholar 

  • Rosier CL, Hoye AT, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211

    Article  CAS  Google Scholar 

  • Salvador-Figueroa M, Adriano-Anaya L, Tzusuki Calderon S, Pardo MEG, Ocampo JA (2008) Aqueous biphasic system to extract arbuscular mycorrhizal spores from soils. Soil Biol Biochem 40:2477–2479

    Article  CAS  Google Scholar 

  • Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertisation gradient. New Phytol 172:159–168

    Article  CAS  Google Scholar 

  • Santos NZ, Dieckow J, Bayer C, Molin R, Favaretto N, Pauletti V, Piva JT (2011) Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Res 111:208–218

    Article  Google Scholar 

  • Schouteden N, de Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1–12

    Article  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  CAS  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, biocides, and biocontrol. 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soils 24:18–26

    Article  CAS  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–210

    Article  CAS  Google Scholar 

  • Schubler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon State University. URL: http://www.amf-phylogeny.com. ISBN-13: 978-1466388048; ISBN-10: 1466388048

  • Sharma MP, Buyer JS (2015) Comparison of biochemical and microscopic methods for quantification of arbuscular mycorrhizal fungi in soil and roots. Appl Soil Ecol 95:86–89

    Article  Google Scholar 

  • Sharma MP, Gupta S, Sharma SK, Vyas AK (2012) Effect of tillage and crop sequences on arbuscular mycorrhizal symbiosis and soil enzyme activities in soybean (Glycine max) rhizosphere. Indian J Agric Sci 82:25–30

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Stott DE, Andrews SS, Liebig MA, Wienhold BJ, Karlen DL (2009) Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework. Soil Sci Soc Am J 74:107–119

    Article  CAS  Google Scholar 

  • Szumigalski AR, Van Acker RC (2006) Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron J 98:1030–1040

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Methods of soil analysis, 2. Microbiological and biochemical properties. DICK W.A. (ed.). Soil Sci Soc Am 5:775–833

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenol phosphate for assay of soil phosphatase. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tian H, Drijber RA, Zhang JL, Li XL (2013) Impact of long-term nitrogen fertization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agric Ecosyst Environ 164:53–61

    Article  CAS  Google Scholar 

  • Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of Arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232

    Article  CAS  Google Scholar 

  • Triplett JRGB, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Agron J 100:153–165 Celebrate the Centennial, A Supplement

    Article  Google Scholar 

  • Troeh ZI, Loynachan TE (2003) Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron J 95:224–230

    Article  Google Scholar 

  • Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425

    Article  CAS  Google Scholar 

  • Usuki K, Yamamoto H (2003) Effect of cropping system on arbuscular mycorrhizal fungal population, growth and yield of succeeding crop on Andosol in central region of Japan. Jap J Crop Sci 72:158–162

    Article  Google Scholar 

  • Vanhie M (2014) Soybean response to management of corn residue through removal, tillage, stalk chopping, planter type, and nitrogen application. Master’s thesis, The University of Guelph, Guelph, Ontario, Canada

    Google Scholar 

  • van Geel M, Ceustermans A, van Hemelrijck W, Lievens B, Honnay O (2015) Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale. Mol Ecol 24:941–952

    Article  CAS  Google Scholar 

  • Vargas Gil S, Meriles J, Conforto C, Basanta M, Radl V, Hagn A, Schloter M, March GJ (2011) Soil microbial communities response to tillage and crop rotation in a soybean agroecosystem in Argentina. Eur J Soil Biol 47:55–60

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem 19:697–702

    Article  CAS  Google Scholar 

  • Venedikian N, Chiocchio V, Martinez A, Menendez A, Ocampo JA, Godeas A (1999) Influence of the fungicides carbendazim and chlorothalonil on spore germination, arbuscular mycorrhizal colonization and growth of soybean plants. Agrochimica 43:105–109

    CAS  Google Scholar 

  • Verbruggen E, Kuramae EE, Hillekens R, de Hollander M, Kiers ET, Roling WFM, Kowalchuk GA, van der Heijden MGA (2012) Testing Potential Effects of Maize Expressing the Bacillus thuringiensis Cry1Ab Endotoxin (Bt Maize) on Mycorrhizal Fungal Communities via DNA- and RNA-Based Pyrosequencing and Molecular Fingerprinting. Appl Environ Microbiol 78:7384–7392. doi:10.1128/AEM.01372-12

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  Google Scholar 

  • Wang GM, Stribley DP, Tinker PB, Walker C (1993) Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytol 124:465–472

    Article  CAS  Google Scholar 

  • Whiffen L (2007) Arbuscular mycorrhizal fungi and carbon sequestration in soil. Ph.D. thesis, School of biological sciences, University of Sydney

    Google Scholar 

  • Wilson AT (1978) Pioneer agriculture explosion and CO2 levels in the atmosphere. Nature 273:40–41

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyay A (1996) Extraction of an abundant and unusual glycoprotein from soil and comparison with hyphal protein from arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wróbel-Kwiatkowska M, Turnau K, Góralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22:493–499

    Article  CAS  Google Scholar 

  • Wu F, Dong M, Liu Y, Ma X, An L, Young JPW, Feng H (2010) Effects of long-term fertization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant Soil 342:233–247

    Article  CAS  Google Scholar 

  • Xiaojun N, Jianhui Z, Zhengan S (2013) Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion. PLoS ONE 8:e64059

    Article  Google Scholar 

  • Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep 4:5634

    Article  CAS  Google Scholar 

  • Zhang B, Li Y, Ren T, Tian Z, Wang G, He X, Tian C (2014) Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol Fertil Soils 50:1077–1085

    Article  CAS  Google Scholar 

  • Zhang SX, Li Q, Wei K, Chen LJ, Liang WJ (2012) Effect of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res 124:196–202

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director, ICAR-Directorate of Soybean Research, Indore for providing the necessary facilities. Funding from National Programme of CO2 sequestration research, DST, New Delhi project to MPS and JRF to RA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaveer P. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Agnihotri, R., Ramesh, A., Singh, S., Sharma, M.P. (2017). Impact of Agricultural Management Practices on Mycorrhizal Functioning and Soil Microbiological Parameters Under Soybean-Based Cropping Systems. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_15

Download citation

Publish with us

Policies and ethics