Skip to main content

HVS-Inspired Dimensionality Reduction Model Based on Factor Analysis

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 682))

  • 1082 Accesses

Abstract

A biologically inspired dimensionality reduction model is proposed to solve the high dimension data dimensionality reducing and classifying problem. The model is inspired from the Human Visual System (HVS). As in that work, in order to utilize its dimension reduction characteristics we first apply factor analysis to simulate the dimension reduction process from the retina to Lateral Geniculate Nucleus (LGN) to remove redundant irrelevant variables. The common factors obtained are then used to calculate the factor scores and they are regarded as new features to characterize the original features. Finally the new features classified by kSVM. The proposed model is tested in numerical experiments on eight different data sets and the experimental results suggest that the model is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Indyk, P.: Approximate nearest neighbors: towards removing the curse of dimensionality. Theory Comput., 604–613 (2015)

    Google Scholar 

  2. Chang, C.: Data dimensionality reduction. In: Hyperspectral Data Processing: Algorithm Design and Analysis, pp. 168–199. Wiley (2013)

    Google Scholar 

  3. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  4. Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B.: Linear discriminant analysis. In: Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B. (eds.) Robust Data Mining, pp. 237–280. Springer, New York (2013)

    Chapter  Google Scholar 

  5. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Neurocomputing 80(1), 38–46 (2004)

    MATH  Google Scholar 

  6. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4(2), 119–155 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  8. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(15), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  9. Wang, B., Wang, Z., Liao, Y., et al.: HVS-based structural similarity for image quality assessment. In: International Conference on Signal Processing, pp. 1194–1197 (2008)

    Google Scholar 

  10. Dacey, D.M., Liao, H.W., Peterson, B.B.: Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN. Nature 433(7027), 749–754 (2005)

    Article  Google Scholar 

  11. Gozli, D.G., Moskowitz, J.B., Pratt, J.: Visual attention to features by associative learning. Cognition 133(2), 488–501 (2014)

    Article  Google Scholar 

  12. Frintrop, S. (ed.): VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006). doi:10.1007/11682110

    Google Scholar 

  13. Hong, Q., Xi, X., Li, Y.: Biologically inspired visual model with preliminary cognition and active attention adjustment. IEEE Trans. Cybern. 45(11), 2612–2624 (2015)

    Article  Google Scholar 

  14. Mulaik, S.A.: Foundations of Factor Analysis. Chapman Hall/CRC, New York (2009)

    MATH  Google Scholar 

  15. Dong, S., Sun, D., Tang, B., et al.: A fault diagnosis method for rotating machinery based on PCA and Morlet kernel SVM. Math. Prob. Eng. 2014(10), 805–808 (2014)

    Google Scholar 

  16. Kerr, D., Mcginnity, T.M., Coleman, S., et al.: A biologically inspired spiking model of visual processing for image feature detection. Neurocomputing 158, 268–280 (2015)

    Article  Google Scholar 

  17. Masland, R.H.: The fundamental plan of the retina. Nat. Neurosci. 4(9), 877–886 (2001)

    Article  Google Scholar 

  18. Lee, H., Kirkby, L., Brott, B.K., et al.: Synapse elimination and learning rules coregulated by MHC Class I H2-Db. Nature 509(7499), 195–200 (2014)

    Article  Google Scholar 

  19. Dasog, M., Koirala, K., Liu, P., et al.: EMG bandwidth used in signal whitening. In: 2013 39th Annual Northeast Bioengineering Conference (NEBEC), pp. 189–190. IEEE (2013)

    Google Scholar 

  20. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. Official J. Soc. Neurosci. 2(1), 32–48 (2015)

    Google Scholar 

  21. Maccallum, R.C., Widaman, K.F., Zhang, S., et al.: Sample size in factor analysis. Psychol. Methods 4(1), 84–99 (1999)

    Article  Google Scholar 

  22. Anderson, T.W., Rubin, H.: Statistical Inference in Factor Analysis, pp. 111–150. University of California, Berkeley (2015)

    Google Scholar 

  23. Liu, X., Jiang, B., Gu, W., et al.: Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang city China. BMC Infect. Dis. 11(1), 1–6 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by National Nature Science Foundation of China (U1304602) and Colleges and Universities Major Scientific Research Funded Projects of Henan Province (15A120016). The authors thank the Magnetic Resonance Department, the first Affiliated Hospital of Zhengzhou University for data providing and marking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Shang, Z., Li, M., Dong, Y. (2016). HVS-Inspired Dimensionality Reduction Model Based on Factor Analysis. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-10-3614-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3614-9_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3613-2

  • Online ISBN: 978-981-10-3614-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics