Skip to main content

K-Medoids-Based Consensus Clustering Based on Cell-Like P Systems with Promoters and Inhibitors

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 681))

Abstract

Consensus clustering is a class of robust clustering algorithms, which obtain the finally clustering results based on multiple existing basic partitionings. In this study, we introduce the K-medoids algorithm and the cell-like P systems with promoters and inhibiters (a class of parallel and distributed computing models) to the consensus clustering, and propose the K-medoids-based consensus clustering based on the cell-like P system with promoters and inhibiters. Through the experiment, the proposed consensus clustering algorithm can obtain high quality clustering results in a short time. This study improves the result in TKDE, 2015, 2, 155–169.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(12), 583–617 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Sandro, V., Jose, R.: A survey of clustering ensemble algorithm. Int. J. Pattern Recogn. Artif. Intell. 25(3), 337–372 (2011)

    Article  MathSciNet  Google Scholar 

  3. Abdala, D.D., Wattuya, P., Jiang, X.: Ensemble clustering via random walker consensus strategy. In: International Conference on Pattern Recognition, pp. 1433–1436 (2010)

    Google Scholar 

  4. Zhou, P., Du, L., Wang, H., Shi, L., Shen, Y.: Learning a robust consensus matrix for clustering ensemble via Kullback-Leibler divergence minimization. In: International Conference on Artificial Intelligence, pp. 4112–4118 (2015)

    Google Scholar 

  5. Huang, D., Lai, J., Wang, C.: Robust ensemble clustering using probability trajectories. IEEE Trans. Knowl. Data Eng. 28(5), 1312–1326 (2016)

    Article  Google Scholar 

  6. Xanthopoulos, P.: A review on consensus clustering methods. Optim. Sci. Eng. 8(5), 553–566 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mirkin, B.G., Shestakov, A.: Least square consensus clustering: criteria, methods, experiments. Adv. Inf. Retr. 7814, 764–767 (2013)

    Article  Google Scholar 

  8. Saeed, F., Salim, N., Abdo, A.: Voting-based consensus clustering for combining multiple clusterings of chemical structures. J. Cheminform. 4(1), 165–178 (2012)

    Article  Google Scholar 

  9. Wu, J., Liu, H., Xiong, H., Cao, J., Chen, J.: K-means-based consensus clustering: a unified view. IEEE Trans. Knowl. Data Eng. 27(1), 155–169 (2015)

    Article  Google Scholar 

  10. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis. Wiley, New York (1990)

    MATH  Google Scholar 

  11. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  13. Marti, C., Păun, G., Pazos, J.: Tissue P systems. Theoret. Comput. Sci. 296(2), 295–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2), 279–308 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Song, T., Wang, X.: Homogenous spiking neural P systems with inhibitory synapses. Neural Process. Lett. 42(1), 199–214 (2015)

    Article  MathSciNet  Google Scholar 

  16. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. Nanobiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  17. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. Nanobiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  18. Cavaliere, M., Ibarra, O.H., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.: Asynchronous spiking neural P systems. Theoret. Comput. Sci. 410(24), 2352–2364 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(12), 193–200 (2016)

    Article  Google Scholar 

  20. Song, T., Zheng, P., Wong, M.L.D., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016). doi:10.1016/j.ins.2016.08.055

    Article  Google Scholar 

  21. Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi:10.1109/TNB.2016.2598879

    Google Scholar 

  22. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015)

    Article  MathSciNet  Google Scholar 

  23. Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural P systems with thresholds. Neural Comput. 26(7), 1340–1361 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X., Wang, B., Pan, L.: Spiking neural P systems with a generalized use of rules. Neural Comput. 26(12), 2925–2943 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundamenta Informaticae 97(1), 275–294 (2009)

    MATH  MathSciNet  Google Scholar 

  26. Song, T., Zou, Q., Zeng, X., Liu, X.: Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 151(1), 1439–1445 (2015)

    Article  Google Scholar 

  27. Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max spike number. Theoret. Comput. Sci. 410(30), 2982–2991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Song, T., Xu, J., Pan, L.: On the universality and non-nniversality of spiking neural P systems with rules on synapses. IEEE Trans. Nanobiosci. 14(8), 960–966 (2015)

    Article  Google Scholar 

  29. Wang, X., Song, T., Gong, F., Zheng, P.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. 6, 27624 (2016). doi:10.1038/srep27624

    Article  Google Scholar 

  30. Zhang, X., Liu, Y., Luo, B., Pan, L.: Computational power of tissue P systems for generating control languages. Inf. Sci. 278(10), 285–297 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with weights. Inf. Sci. 278(10), 423–433 (2014)

    Article  MathSciNet  Google Scholar 

  32. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using P systems: the Lac Operon, a case study. Biosystems 91(3), 438–457 (2008)

    Article  Google Scholar 

  33. Bel Enguix, G.: Preliminaries about some possible applications of P systems in linguistics. In: PĂun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 74–89. Springer, Heidelberg (2003). doi:10.1007/3-540-36490-0_6

    Chapter  Google Scholar 

  34. Enguix, G.B.: Unstable P systems: applications to linguistics. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 190–209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31837-8_11

    Chapter  Google Scholar 

  35. Song, T., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with anti-spikes. Neural Process. Lett. 42(3), 633–647 (2015)

    Article  Google Scholar 

  36. Díaz-Pernil, D., Berciano, A., Pena-Cantillana, F., GutiéRrez-Naranjo, M.A.: Segmenting images with gradient-based edge detection using membrane computing. Pattern Recogn. Lett. 34(8), 846–855 (2013)

    Article  Google Scholar 

  37. Song, T., Zheng, H., He, J.: Solving vertex cover problem by tissue P systems with cell division. Appl. Math. Inf. Sci. 8(1), 333–337 (2014)

    Article  Google Scholar 

  38. Păun, G., Păun, R.: Membrane computing and economics: numerical P systems. Fundamenta Informaticae 73(1,2), 213–227 (2006)

    MATH  MathSciNet  Google Scholar 

  39. Păun, G.: A quick introduction to membrane computing. J. Log. Algebr. Program. 79(1), 291–294 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. http://archive.ics.uci.edu/ml

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of China (Nos. 61170038, 61472231, 61402187, 61502535, 61572522 and 61572523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhen Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liu, X., Zhao, Y., Sun, W. (2016). K-Medoids-Based Consensus Clustering Based on Cell-Like P Systems with Promoters and Inhibitors. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-10-3611-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3611-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3610-1

  • Online ISBN: 978-981-10-3611-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics