Skip to main content

Structure, Function, and Nutrition of Selenium-Containing Proteins from Foodstuffs

  • Chapter
  • First Online:
Mineral Containing Proteins
  • 647 Accesses

Abstract

Selenium is an essential trace element for both human beings and animals, which has received considerable attention. The essentiality of this element is due to the requirement for the 21st amino acid, selenocysteine, which is used for the synthesis of about a dozen selenoenzymes. So far, many different dietary sources have been explored for Se supplementation. This chapter reported structure, function, and nutrition of important selenium-containing proteins from foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kieliszek M, Błażejak S. Selenium: significance, and outlook for supplementation. Nutrition. 2013;29:713–8.

    Article  CAS  Google Scholar 

  2. Zhang ZX, Zhang XG, Xia YM, Chen XS. Progress in the study of mammalian selenoprotein. Prog Physiol Sci. 1998;29:29–34.

    Google Scholar 

  3. Weeks BS, Hanna MS, Cooperstein D. Dietary selenium and selenoprotein function. Med Sci Monit. 2012;18:127–32.

    Article  Google Scholar 

  4. Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009;422:11–22.

    Article  CAS  Google Scholar 

  5. Huang Z. Bioactivity of selenium and relevant diseases. Bull Biol. 2006;14:17–9.

    CAS  Google Scholar 

  6. Aro A, Alfthan G, Vara P. Effects of supplementation of fertilizers on human selenium status in Finland. Analyst. 1995;120:841–3.

    Article  CAS  Google Scholar 

  7. Mcnaughton SA, Marks GC. Selenium content of Australian foods: a review of literature values. J Food Compos Anal. 2002;15:169–82.

    Article  CAS  Google Scholar 

  8. Brown KM, Arthur JR. Selenium, selenoproteins and human health: a review. Public Health Nutr. 2001;4:593–9.

    Article  CAS  Google Scholar 

  9. Pieczyńska J, Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol. 2015;29:31–8.

    Article  CAS  Google Scholar 

  10. Liu JQ, Luo GM, Mu Y. Selenoproteins and mimics. Hangzhou: Zhejiang University Press; 2011.

    Google Scholar 

  11. Hada F, Malheiros R, Silva J, Marques R, Gravena R, Silva V. Effect of protein, carbohydrate, lipid, and selenium levels on the performance, carcass yield, and blood changes in broilers. Rev Bras Ciênc Avíc. 2013;15:385–94.

    Article  Google Scholar 

  12. Letavayovać L, Vlckovać V, Brozmanovać J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227:1–14.

    Article  CAS  Google Scholar 

  13. Li JW. Current research of microelement Se on human health. Occup Health Emerg Rescue. 2006;24:76–9.

    Google Scholar 

  14. Finley JW. Bioavailability of selenium from foods. Nutr Rev. 2006;64:146–51.

    Article  Google Scholar 

  15. Sunde RA. Selenium. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, White JD, editors. Encyclopedia of dietary supplements. 2. London: Informa Healthcare; 2010. p. 711–8.

    Google Scholar 

  16. Niedzielski P, Rudnicka M, Wachelka M, Kozak L, Rzany M, Wozniak M. Selenium species in selenium fortified dietary supplements. Food Chem. 2016;190:454–9.

    Article  CAS  Google Scholar 

  17. Dumont E, Ogra Y, Vanhaecke F, Suzuki KT, Cornelis R. Liquid chromatography–mass spectrometry (LC–MS): a powerful combination for selenium speciation in garlic (Allium sativum). Anal Bioanal Chem. 2006;384:1196–206.

    Article  CAS  Google Scholar 

  18. Fairweather-Tait SJ. Bioavailability of selenium. Eur J Clin Nutr. 1997;51:48–54.

    Google Scholar 

  19. Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ. 2004;326:1–31.

    Article  CAS  Google Scholar 

  20. Akl M, Ismael D, El-Asmy A. Precipitate flotation-separation, speciation and hydride generation atomic absorption spectrometric determination of selenium (IV) in food stuffs. Microchem J. 2006;83:61–9.

    Article  CAS  Google Scholar 

  21. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary references intakes for vitamin C, vitamin E, selenium and carotenoids. Washington: National Academy Press; 2000.

    Google Scholar 

  22. Du M, Wang C, Zhang LW, Yi HX, Wang Z. Recent progress on biological functions and dietary source of selenium. Chin J Biotechnol. 2007;5:176–8.

    Google Scholar 

  23. Huang Z, Zheng W, Guo B. Research progress on Se-containing biomacromolecules. Nat Sci J Hainan Univ. 2001;19(2):169–75.

    Google Scholar 

  24. Gao JZ, Huang KH. Progress of selenoprotein research in the animals. Anim Husb Vet Med. 2004;36:39–42.

    Google Scholar 

  25. Steinbrenner H, Speckmann B, Klotz LO. Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys. 2016;595:113–9.

    Article  CAS  Google Scholar 

  26. Behne D, Kyriakopoulos A. Mammalian selenium-containing proteins. Annu Rev Nutr. 2001;21:453–73.

    Article  CAS  Google Scholar 

  27. Huang Z, Xiang J, Guo B. Research progress in physiological functions of selenoenzyme and other selenocompounds. Prog Physiol Sci. 2001;32:293–7.

    CAS  Google Scholar 

  28. Gromadzińska J, Reszka E, Bruzelius K, Wasowicz W, Ǻkesson B. Selenium and cancer: biomarkers of selenium status and molecular action of selenium supplements. Eur J Nutr. 2008;47:29–50.

    Article  CAS  Google Scholar 

  29. Bhaba KP, Mugesh G. A synthetic model for the inhibition of glutathione peroxidase by antiarthritic gold compounds. Inorg Chem. 2009;48:2449–55.

    Article  CAS  Google Scholar 

  30. Gayathri M, Kannabiran K. Effect of 2-hydroxy-4-methoxy benzoic acid isolated from hemidesmus indicus on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-induced diabetic rats. Indian J Pharm Sci. 2012;74:474–8.

    Article  CAS  Google Scholar 

  31. Selvakumar K, Shah P, Singh HB, Butcher RJ. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chem Eur J. 2011;17:12741–55.

    Article  CAS  Google Scholar 

  32. Babizhayev MA. Coated with nanomaterials intraocular lenses, ophthalmic and human body implantable devices with high catalytic antioxidant activities: a new nanotechnology strategy of peroxidase cellular enzyme mimics increasing the biocompatibility and therapeutic deployment of the medical prosthetic device. Recent Pat Drug Deliv Formul. 2013;7:39–65.

    Article  CAS  Google Scholar 

  33. Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57:1825–35.

    Article  CAS  Google Scholar 

  34. Schweizer U, Schomburg L. New insights into the physiological actions of selenoproteins from genetically modified mice. IUBMB Life. 2005;57:737–44.

    Article  CAS  Google Scholar 

  35. Ren B, Huang W, Akesson B, Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol. 1997;268:869–85.

    Article  CAS  Google Scholar 

  36. Brigelius-Flohé R, Flohé L. Is there a role of glutathione peroxidases in signaling and differentiation. Biofactors. 2003;17:93–102.

    Article  Google Scholar 

  37. Song J, Yu Y, Xing R, Guo X, Liu DL, Wei JY, Song HW. Unglycosylated recombinant human glutathione peroxidase 3 mutant from Escherichia coli is active as a monomer. Sci Rep. 2014;4:6698–8.

    Article  CAS  Google Scholar 

  38. Chu FF, Esworthy RS, Doroshow JH, Doan K, Liu XF. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood. 1992;79:3233–8.

    CAS  Google Scholar 

  39. Howie AF, Walker SW, Akesson B, Arthur JR, Beckett GJ. Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem J. 1995;308:713–7.

    Article  CAS  Google Scholar 

  40. Behne D, Hilmert H, Scheid S, Gessner H, Kyriakopoulos A, Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta. 1988;966:12–21.

    Article  CAS  Google Scholar 

  41. Behne D, Kyriakopoulos A, Kalcklosch M, Weiss-Nowak C, Pfeifer H. Two new selenoproteins found in the prostatic glandular epithelium and in the spermatid nuclei. Biomed Environ Sci. 1997;10:340–5.

    CAS  Google Scholar 

  42. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285:1393–6.

    Article  CAS  Google Scholar 

  43. Pfeifer H, Conrad M, Roethlein D, Kyriakopoulos A, Brielmeier M, Bornkamm GW. Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J. 2001;15:1236–8.

    Article  CAS  Google Scholar 

  44. Vézina D, Mauffette F, Roberts KD, Bleau G. Selenium vitamin E supplementation in infertile men. Biol Trace Elem Res. 1996;53:65–83.

    Article  Google Scholar 

  45. Sneddon AA, Hsin-Chieh W, Andrew F, Ian G, Arthur JR, Dino R. Regulation of selenoprotein GPx4 expression and activity in human endothelial cells by fatty acid, cytokines and antioxidant. Atherosclerosis. 2003;171:57–65.

    Article  CAS  Google Scholar 

  46. Wang M, Chai L, Zhao H, Wu M, Wang H. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in Bufo gargarizans larvae. Chemosphere. 2015;139:402–9.

    Article  CAS  Google Scholar 

  47. Simpson GI, Leonard DM, Leonard JL. Identification of the key residues responsible for the assembly of selenodeiodinases. J Biol Chem. 2006;281:14615–21.

    Article  CAS  Google Scholar 

  48. Burk RF, Hill KE. Regulation of selenoproteins. Annu Rev Nutr. 1993;13:65–81.

    Article  CAS  Google Scholar 

  49. Low SC, Harney JW, Berry MJ. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem. 1995;270:21659–64.

    Article  CAS  Google Scholar 

  50. Papp L, Lu J, Holmgren A, Khanna K. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9:775–806.

    Article  CAS  Google Scholar 

  51. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K. Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A. 2004;101:16162–7.

    Article  CAS  Google Scholar 

  52. Holmgren A. Selenoproteins of the thioredoxin system. In: Hatfield DL, editor. Selenium, its molecular biology and role in human health. Boston: Kluwer Academic Publishers; 2006. p. 179–88.

    Google Scholar 

  53. Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982;21:6628–33.

    Article  CAS  Google Scholar 

  54. Saito Y, Sato N, Hirashima M, Takebe G, Nagasawa S, Niki E, Takahashi K. Domain structure of bi-functional selenoprotein P. Program & Abstracts of the International Meeting of the Society for Free Radical Research (SFRR)-Asia & the Third International Symposium on Natural Antioxidants-Molecular Mechanisms and Health Effects. 2004; 381:841–6.

    Google Scholar 

  55. Burk RF, Hill KE. Orphan selenoproteins. Bioessays. 1999;21:231–7.

    Article  CAS  Google Scholar 

  56. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008;400:115–41.

    Article  CAS  Google Scholar 

  57. Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res. 2001;81:189–213.

    Article  CAS  Google Scholar 

  58. Ren F, Chen X, Hesketh J, Gan F, Huang K. Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLoS One. 2012;7:e35375.

    Article  CAS  Google Scholar 

  59. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium restores age-related decline in immune cell function. Proc Soc Exp Biol Med. 1995;209:369–75.

    Article  CAS  Google Scholar 

  60. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Trace Elem Res. 1994;41:103–14.

    Article  CAS  Google Scholar 

  61. Rayman MP. The importance of selenium to human health. Lancet. 2000;356:233–41.

    Article  CAS  Google Scholar 

  62. Kiremidjian-Schumacher L, Roy M, Glickman R, Schneider K, Rothstein S, Cooper J. Selenium and immunocompetence in patients with head and neck cancer. Biol Trace Elem Res. 2000;73:97–111.

    Article  CAS  Google Scholar 

  63. Wangpaichitr M, Sullivan EJ, Theodoropoulos G, Wu C, You M, Feun LG, Lampidis TJ, Kuo MT, Savaraj N. The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells. Mol Cancer Ther. 2012;11:604–15.

    Article  CAS  Google Scholar 

  64. Meuillet E, Stratton S, Cherukuri DP, Goulet AC, Kagey J, Porterfield B. Nelson chemoprevention of prostate cancer with selenium: an update on current clinical trials and preclinical findings. J Cell Biochem. 2004;91:443–58.

    Article  CAS  Google Scholar 

  65. Selenius M, Fernandes AP, Brodin O, Björnstedt M, Rundlöf AK. Treatment of lung cancer cells with cytotoxic levels of sodium selenite: effects on the thioredoxin system. Biochem Pharmacol. 2008;75:2092–9.

    Article  CAS  Google Scholar 

  66. Meplan C, Nicol F, Burtle BT. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid Redox Signal. 2009;11:2631–40.

    Article  CAS  Google Scholar 

  67. Burk RF, Hill KE. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr. 2005;25:215–35.

    Article  CAS  Google Scholar 

  68. Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis. 1999;20:1657–66.

    Article  CAS  Google Scholar 

  69. Schweizer U, Schomburg L, Savaskan NE. The neurobiology of selenium: lessons from transgenic mice. J Nutr. 2004;134:707–10.

    CAS  Google Scholar 

  70. Bösl MR, Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci. 1997;94:5531–4.

    Article  Google Scholar 

  71. Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE. Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain. 1975;98:49–64.

    Article  Google Scholar 

  72. Zhang S, Rocourt C, Cheng WH. Selenoproteins and the aging brain. Mech Ageing Dev. 2010;131:253–60.

    Article  CAS  Google Scholar 

  73. Schweizer U, Bräuer AU, Köhrle J. Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev. 2004;45:164–78.

    Article  CAS  Google Scholar 

  74. Brown JS, Foster HD. Schizophrenia: an update of the selenium deficiency hypothesis. J Orthomol Med. 1996;11:211–22.

    Google Scholar 

  75. Weber GF, Maertens P, Meng X, Pippenger CE. Glutathione peroxidase deficiency and childhood seizures. Lancet. 1991;337:1443–4.

    Article  CAS  Google Scholar 

  76. Ramaekers VT, Calomme M, Vanden BD, Makropoulos W. Selenium deficiency triggering intractible seizures. Neuropediatrics. 1994;25:217–23.

    Article  CAS  Google Scholar 

  77. Gu QP, Sun Y, Ream LW, Whanger PD. Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem. 2000;204:49–56.

    Article  CAS  Google Scholar 

  78. Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008;52:1273–80.

    Article  CAS  Google Scholar 

  79. Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem. 2008;283:2427–38.

    Article  CAS  Google Scholar 

  80. Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003;86:1–12.

    Article  CAS  Google Scholar 

  81. Lovell MA, Xie C, Gabbita SP, Markesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radic Biol Med. 2000;28:418–27.

    Article  CAS  Google Scholar 

  82. Schomburg L, Schweizer U, Holtmann B, Flohé L, Sendtner M, Köhrle J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J. 2003;370:397–402.

    Article  CAS  Google Scholar 

  83. Whanger PD. Selenium and the brain: a review. Nutr Neurosci. 2001;4:81–97.

    Article  CAS  Google Scholar 

  84. Lewin MH, Arthur JR, Riemersma RA, Nicol F, Walker SW, Millar EM. Selenium supplementation acting through the induction of thioredoxin reductase and glutathione peroxidase protects the human endothelial cell line EZhy926 from damage by lipid hydroperoxides. Biochim Biophys Acta. 2002;1593:85–92.

    Article  CAS  Google Scholar 

  85. Schnabel R, Lubos E, Messow CM, Sinning CR, Zeller T, Wild PS. Selenium supplementation improves antioxidant capacity in vitro and in vivo in patients with coronary artery disease. The SElenium Therapy in Coro-nary Artery disease Patients (SETCAP) Study. Am Heart J. 2008;156:1–11.

    Article  CAS  Google Scholar 

  86. Ricetti MM, Guidi GC, Tecchio C, Bellisola G, Rigo A, Perona G. Effects of sodium selenite on in vitro interactions between platelets and endothelial cells. Int J Clin Lab Res. 1999;29:80–4.

    Article  CAS  Google Scholar 

  87. JoSelPh J. Selenium and cardiometabolic health: inconclusive yet intriguing evidence. Am J Med Sci. 2013;346:216–20.

    Article  Google Scholar 

  88. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med. 2003;34:145–69.

    Article  CAS  Google Scholar 

  89. Vitoux D, Chappuis P, Arnaud J, Bost M, Accominotti M, Roussel AM. Selenium, glutathione peroxidase, peroxides and platelet functions. Ann Biol Clin. 1996;54:181–7.

    CAS  Google Scholar 

  90. Luoma PV, Sotaniemi EA, Korpela H, Kumpulainen J. Serum selenium, glutathione peroxidase activity and high-density lipoprotein cholesterol—effect of selenium supplementation. Res Commun Chem Pathol Pharmacol. 1984;46:469–72.

    CAS  Google Scholar 

  91. Néve J. Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk. 1996;3(1):42–7.

    Article  Google Scholar 

  92. Kumara BS, Priyadarsini KI. Selenium nutrition: how important is it? Biomed Prev Nutr. 2014;4:333–41.

    Article  Google Scholar 

  93. Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    Article  CAS  Google Scholar 

  94. Baljinnyam E, Hasebe N, Morihira M, Sumitomo K, Matsusaka T, Fujino T. Oral pretreatment with ebselen enhances heat shock protein 72 expression and reduces myocardial infarct size. Hypertens Res. 2006;29:905–13.

    Article  CAS  Google Scholar 

  95. Tanguy S, Morel S, Berthonneche C, Toufektsian MC, De LM, Ducros V. Preischemic selenium status as a major determinant of myocardial infarct size in vivo in rats. Antioxid Redox Signal. 2004;6:792–6.

    Article  CAS  Google Scholar 

  96. Stranges S, Marshall JR, Trevisan M, Natarajan R, Donahue RP, Combs GF, Farinaro E, Clark LC, Reid ME. Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol. 2006;163:694–969.

    Article  Google Scholar 

  97. Zhou J, Bai Z, Xu H, Huang K. Selenoproteins and diabetes-dual effect of selenium. Prog Chem. 2013;25:488–94.

    CAS  Google Scholar 

  98. Wang XD, Vatamaniuk MZ, Wang SK, Roneker CA, Simmon RA, Lei XG. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia. 2008;51:1515–24.

    Article  CAS  Google Scholar 

  99. Rocourt CR, Cheng WH. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients. 2013;5:1349–65.

    Article  CAS  Google Scholar 

  100. Zhao L, Zhao G, Zhao Z, Chen P, Tong J, Hu X. Selenium distribution in a Se-enriched mushroom species of the genus Ganoderma. J Agric Food Chem. 2004;52:3954–9.

    Article  CAS  Google Scholar 

  101. Zhao L, Zhao G, Hui B, Zhao Z, Tong J, Hu X. Effect of selenium on increasing the antioxidant activity of protein extracts from a selenium-enriched mushroom species of the Ganoderma genus. J Food Sci. 2004;69:184–8.

    Google Scholar 

  102. Wang G, Shang D, Yang W. Study on the nutritional components and antioxidant of Ganoderma lucidum rich in selenium. Acta Nutr Sin. 2001;23:73–5.

    CAS  Google Scholar 

  103. Wang J, Cai J. Effects of selenium applications on the selenium content, yield and quality of garlic. Chin Agric Sci Bull. 2006;22:342–4.

    Google Scholar 

  104. Diao J, Li L, Yang S, Li X, Chen J. Determination of selenium in garlic and its products using hydride generation atomic fluorescence spectrometry. Food Sci. 2009;30:166–8.

    CAS  Google Scholar 

  105. Yuan J, Wang P, Liu Z, Guo F, Hu F, Shi S. Effect of application of sodium selenite to soil on physiological characteristic, Se content and yield of garlic. J Xinjiang Agric Univ. 2010;33:19–22.

    CAS  Google Scholar 

  106. Larsen E, Lobinski R, Burger-Meyer K. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem. 2006;385:1098–108.

    Article  CAS  Google Scholar 

  107. Yue J, Qi X, Xie B, Sun Z. Studies on antioxidation activities of different Se-proteins from Se-enriched garlic. J Chin Inst Food Sci Technol. 2010;10:60–7.

    CAS  Google Scholar 

  108. Li Y, Xu S. Garlic alliinase preparation and purification testing. Food Sci. 2007;28:63–6.

    Google Scholar 

  109. Fang Y, Luo P, Hu Y, Ma N, Yang W, Xin Z, Zhao L, Hu Q. Bioaccumulation and speciation analysis of selenium in garlic (Allium sativum L.). Food Sci. 2012;33:1–5.

    Google Scholar 

  110. Ip C, Ganther HE. Comparison of selenium and sulfur analogs in cancer prevention. Carcinogenesis. 1992;13:1167–71.

    Article  CAS  Google Scholar 

  111. Ip C, Lisk DJ. Efficacy of cancer prevention by high-selenium garlic is primarily dependent on the action of selenium. Carcinogenesis. 1995;16:2649–52.

    Article  CAS  Google Scholar 

  112. Yang S, Wu T, Wu Y. Research progress on anti-cancer active substances in selenium-rich garlic. J Hubei Inst Nationalities. 2005;23:134–6.

    CAS  Google Scholar 

  113. Govasmark E, Brandt-Kjelsen A, Szpunar J, Bierla K, Vegarud G, Salbu B. Bioaccessibility of Se from Se-enriched wheat and chicken meat. Pure Appl Chem. 2010;82:461–71.

    Article  CAS  Google Scholar 

  114. Huang Q, Wang S, Zheng W, Dai G, Yang J. Research progress of selenium-rich in wheat. J Green Sci Technol. 2015;12:73–6.

    Google Scholar 

  115. Toepfer EW, Polansky MM, Heart JF, Slover HT, Morris ER, Hepburn FN, Quackenbush FW. Nutrient composition of selected wheats and wheat products. XI. Summary. Cereal Chem. 1972;49:173–86.

    CAS  Google Scholar 

  116. Lyons GH, Genc Y, Stangoulis JCR, Palmer LT, Graham RD. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res. 2005;103:155–68.

    Article  CAS  Google Scholar 

  117. Cubadda F, Aureli F, Raggi A, Carcea M. Effect of milling, pasta making and cooking on minerals in durum wheat. Cereal Sci. 2009;49:92–7.

    Article  CAS  Google Scholar 

  118. Tang Y, Wang H, Yang J, Lv Y. Studies on the selenium content and selenium enriched technique of winter wheat in Hebei Province. J Triticeae Crops. 2011;31:347–51.

    CAS  Google Scholar 

  119. Xiang D. Study on distribution law and combined form of selenium in selenium-enriched wheat grain. Food Sci. 2008;29:52–4.

    Google Scholar 

  120. Meltzer HM, Bibow K, Paulsen IT, Mundal HH, Norheim G, Holm H. Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se. Biol Trace Elem Res. 1993;36:229–41.

    Article  CAS  Google Scholar 

  121. Kong L, Xu G, Kang Y, Yang Z, Song H, Xue W. Comparative study of effects of selenium as Se-rich wheat or Se-rich corn on blood Se status of rats fed low-Se diet. Guangdong Weiliang Yuansu Kexue. 2010;7:20–3.

    Google Scholar 

  122. Galinha C, Sánchez-Martínez M, Adriano MG, Pacheco AM, Freitas Mdo C, Coutinho J, Maçãs B, Almeida AS, Pérez-Corona MT, Madrid Y, Wolterbeek HT. Characterization of selenium-enriched wheat by agronomic biofortification. Food Sci Technol. 2015;52(7):4236–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Nature Science Foundation of China (No. 31501489) and Nature Science Foundation of Tianjin (youth program) (16JCQNJC14500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, R., Liu, Y. (2017). Structure, Function, and Nutrition of Selenium-Containing Proteins from Foodstuffs. In: Zhao, G. (eds) Mineral Containing Proteins . Springer, Singapore. https://doi.org/10.1007/978-981-10-3596-8_4

Download citation

Publish with us

Policies and ethics