Skip to main content

Structure, Function, and Nutrition of Lactoferrin

  • Chapter
  • First Online:
Mineral Containing Proteins

Abstract

Lactoferrin (Lf) is a polyfunctional protein from varied secretions of organisms. To date, about 20 different physiological roles of Lf have been reported. More and more studies on the structure and functions of Lf as well as the relationship of them have been intensively reported. In order to understand the Lf bioactivities and the mechanisms of different Lf functions, especially on the relationship between structure and functions, the research advancements are described in this study. In particular, the structure, bioactive site, thermal stability, several kinds of bioactive mechanisms such as antimicrobial, osteogenic, immunomodulatory, antitumor, antioxidant, and enzymic activities, and so forth are involved. Altogether, these are expected to provide some new ideas for the interesting topics about Lf, not only helpful for scientific research, but also for practical application in the medical and food industries, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker EN, Baker HM. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie. 2009;91:3–10.

    Google Scholar 

  2. García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820:226–36.

    Google Scholar 

  3. Nuijens JH, van Berkel PH, Schanbacher FL. Structure and biological actions of lactoferrin. J Mammary Gland Biol Neoplasia. 1996;1:285–95.

    Article  CAS  Google Scholar 

  4. Reiter B, Brock J, Steel ED. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistant strain of E. coli. Immunology. 1975;28:71–82.

    CAS  Google Scholar 

  5. Ellison RD, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun. 1988;56:2774–81.

    CAS  Google Scholar 

  6. Ellison R. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Investig. 1991;88:1080–171.

    Article  CAS  Google Scholar 

  7. Van Veen HA, Geerts ME, van Berkel PH, Nuijens JH. The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur J Biochem. 2004;271:678–84.

    Article  CAS  Google Scholar 

  8. Cornish J, Palmano K, Callon KE, Watson M, Lin JM, Valenti P, Naot D, Grey AB, Reid IR. Lactoferrin and bone; structure-activity relationships. Biochem Cell Biol. 2006;84:297–302.

    Article  CAS  Google Scholar 

  9. Cornish J, Callon KE, Naot D, Palmano KP, Banovic T, Bava U, Watson M, Lin JM, Tong PC, Qi C, Chan VA, Reid HE, Fazzalari N, Baker HM, Baker EN, Haggarty NW, Grey AB, Reid IR. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology. 2004;145:4366–74.

    Article  CAS  Google Scholar 

  10. Masson P, Heremans J. Lactoferrin in milk from different species. Comp Biochem Physiol B. 1971;39:119–IN113.

    Article  CAS  Google Scholar 

  11. Sanchez L, Aranda P, Pérez M, Calvo M. Concentration of lactoferrin and transferrin throughout lactation in cow’s colostrum and milk. Biol Chem Hoppe Seyler. 1988;369:1005–8.

    Article  CAS  Google Scholar 

  12. Baker E. Structure and reactivity of transferrins. Adv Inorg Chem. 1994;41:389–463.

    Article  CAS  Google Scholar 

  13. Sreedhara A, Flengsrud R, Prakash V, Krowarsch D, Langsrud T, Kaul P, Devold TG, Vegarud GE. A comparison of effects of pH on the thermal stability and conformation of caprine and bovine lactoferrin. Int Dairy J. 2010;20:487–94.

    Article  CAS  Google Scholar 

  14. Shimazaki KI, Tanaka T, Kon H, Oota K, Kawaguchi A, Maki Y, Sato T, Ueda Y, Tomimura T, Shimamura S. Separation and characterization of the C-terminal half molecule of bovine lactoferrin. J Dairy Sci. 1993;76:946–55.

    Article  CAS  Google Scholar 

  15. Bai X, Teng D, Tian Z, Zhu Y, Yang Y, Wang J. Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus. Biometals. 2010;23:431–9.

    Article  CAS  Google Scholar 

  16. Steijns JM, Van Hooijdonk A. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr. 2000;84:11–7.

    Article  Google Scholar 

  17. Grossmann JG, Neu M, Pantos E, Schwab FJ, Evans RW, Townes-Andrews E, Lindley PF, Appel H, Thies WG, Hasnain SS. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovo-transferrins. J Mol Biol. 1992;225:811–9.

    Article  CAS  Google Scholar 

  18. Andersen BF, Baker HM, Morris GE, Rumball SV, Baker EN. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature. 1990;344:784–7.

    Article  Google Scholar 

  19. Gerstein M, Anderson BF, Norris GE, Baker EN, Lesk AM, Chothia C. Domain closure in lactoferrin: Two hinges produce a see-saw motion between alternative close-packed interfaces. J Mol Biol. 1993;234:357–72.

    Article  CAS  Google Scholar 

  20. Jameson G. B.; Anderson B. F.; Norris G. E.; Thomas D.; Baker E., Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change. Acta Crystallogr D Biol Crystallogr. 1998;54:1319–35.

    Article  CAS  Google Scholar 

  21. Haridas M, Anderson B, Baker E. Structure of human diferric lactoferrin refined at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr. 1995;51:629–46.

    Article  CAS  Google Scholar 

  22. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol. 1997; 274:222–36.

    Google Scholar 

  23. Van Berkel P, Geerts ME, Van Veen HA, Kooiman PM, Pieper FR, De Boer HA, Nuijens JH. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J. 1995;312:107–14.

    Article  CAS  Google Scholar 

  24. Wei Z, Nishimura T, Yoshida S. Characterization of glycans in a lactoferrin isoform, lactoferrin-a. J Dairy Sci. 2001;84:2584–90.

    Article  CAS  Google Scholar 

  25. Baker E, Baker H. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci. 2005;62:2531–9.

    Article  CAS  Google Scholar 

  26. Patel HA, Singh H, Anema SG, Creamer LK. Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk. J Agric Food Chem. 2006;54:3409–20.

    Article  CAS  Google Scholar 

  27. Brock JH. Lactoferrin structure-function relationships. Totowa: Humana Press; 1997. p. 3–23.

    Google Scholar 

  28. Khan JA, Kumar P, Paramasivam M, Yadav RS, Sahani MS, Sharma S, Srinivasan A, Singh TP. Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 Å resolution and structural basis of its dual role. J Mol Biol. 2001;309:751–61.

    Article  CAS  Google Scholar 

  29. Rüegg M, Moor U, Blanc B. A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. J Dairy Res. 1977;44:509–20.

    Article  Google Scholar 

  30. Abe H, Saito H, Miyakawa H, Tamura Y, Shimamura S, Nagao E, Tomita M. Heat stability of bovine lactoferrin at acidic pH. J Dairy Sci. 1991;74:65–71.

    Article  CAS  Google Scholar 

  31. Paulsson MA, Svensson U, Kishore AR, Satyanarayan NA. Thermal behavior of bovine lactoferrin in water and its relation to bacterial interaction and antibacterial activity. J Dairy Sci. 1993;76:3711–20.

    Article  CAS  Google Scholar 

  32. Oria R, Ismail M, Sánchez L, Calvo M, Brock JH. Effect of heat treatment and other milk proteins on the interaction of lactoferrin with monocytes. J Dairy Res. 1993;60:363–9.

    Article  CAS  Google Scholar 

  33. Sánchez L, Peiro J, Castillo H, Perez M, Ena J, Calvo M. Kinetic parameters for denaturation of bovine milk lactoferrin. J Food Sci. 1992;57:873–9.

    Article  Google Scholar 

  34. Liu M, Du M, Kong YY, Zhang LW. Purification and Effect of Heat Treatment on Properties of Lactoferrin. J Food Sci Technol. 2013;31:26–30.

    CAS  Google Scholar 

  35. Kussendrager K. Effects of heat treatment on structure and iron-binding capacity of bovine lactoferrin. Paper presented at: Indigenous Antimicrobial Agents of Milk-Recent Developments 1994; Uppsala, Sweden.

    Google Scholar 

  36. Kawakami H, Hiratsuka M, Dosako S. Effects of iron-saturated lactoferrin on iron absorption. Agric Biol Chem. 1988;52:903–8.

    CAS  Google Scholar 

  37. Hagiwara T, Ozawa K, Fukuwatari Y, Hayasawa H, Hirohata Y, Adachi A, Kanda S, Aihara K. Effects of lactoferrin on iron absorption in immature mice. Nutr Res. 1997;17:895–906.

    Article  CAS  Google Scholar 

  38. Iyer S, Lonnerdal B. Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr. 1993;47:232–41.

    CAS  Google Scholar 

  39. Saarinen UM, Siimes MA. Iron absorption from infant milk formula and the optimal level of iron supplementation. Acta Paediatr. 1977;66:719–22.

    Article  CAS  Google Scholar 

  40. Chierici R, Sawatzki G, Tamisari L, Volpato S, Vigi V. Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatr. 1992;81:475–9.

    Article  CAS  Google Scholar 

  41. King Jr JC, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, Feigelman S, Waard RD. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr. 2007;44:245–51.

    Article  CAS  Google Scholar 

  42. Chen GY, Chen TX, Chen HJ, He ZJ, Wu SM. Effect of lactoferrin fortified formula on infant growth and development and the accounts of peripheral blood cells. Chin J Postgrad Med. 2011;34:52–5.

    CAS  Google Scholar 

  43. Ke C, Zhang L, Li H, Zhang Y, Xie H, Shang J, Tian WZ, Yang P, Chai LY, Mao M. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31:304–9.

    Article  CAS  Google Scholar 

  44. Koikawa N, Nagaoka I, Yamaguchi M, Hamano H, Yamauchi K, Sawaki K. Preventive effect of lactoferrin intake on anemia in female long distance runners. Biosci Biotechnol Biochem. 2008;72:931–5.

    Article  CAS  Google Scholar 

  45. Paesano R, Torcia F, Berlutti F, Pacifici E, Ebano V, Moscarini M, Valenti P. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem Cell Biol. 2006;84:377–80.

    Article  CAS  Google Scholar 

  46. Paesano R, Pietropaoli M, Gessani S, Valenti P. The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia. Biochimie. 2009;91:44–51.

    Article  CAS  Google Scholar 

  47. Paesano R, Berlutti F, Pietropaoli M, Goolsbee W, Pacifici E, Valenti P. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. Int J Immunopathol Pharmacol. 2010;23:577–87.

    Article  CAS  Google Scholar 

  48. Wang X, Liu S, Xu H, Yan W. Effects of recombinant human lactoferrin on improving the iron status of IDA rats. J Hyg Res. 2012;41:13–7. 13-17

    Google Scholar 

  49. Davidsson L, Kastenmayer P, Yuen M, Lönnerdal B, Hurrell RF. Influence of lactoferrin on iron absorption from human milk in infants. Pediatr Res. 1994;35:117–24.

    Article  CAS  Google Scholar 

  50. Hernell O, Lönnerdal B. Iron status of infants fed low-iron formula: no effect of added bovine lactoferrin or nucleotides. Am J Clin Nutr. 2002;76:858–64.

    CAS  Google Scholar 

  51. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. 1992;1121:130–6.

    Article  CAS  Google Scholar 

  52. Sherman MP, Bennett SH, Hwang FF, Yu C. Neonatal small bowel epithelia: enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals. 2004;17:285–9.

    Article  CAS  Google Scholar 

  53. Håversen L, Kondori N, Baltzer L, Hanson L, Dolphin G, Duner K, Mattsby-Baltzer I. Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial α-helix of human lactoferrin. Antimicrob Agents Chemother. 2010;54:418–25.

    Article  CAS  Google Scholar 

  54. Hara K, Ikeda M, Saito S, Matsumoto S, Numata K, Kato N, Tanaka K, Sekihara H. Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes. Hepatol Res. 2002;24:228–35.

    Article  CAS  Google Scholar 

  55. Qiu J, Hendrixson DR, Baker EN, Murphy TF, Geme JWS, Plaut AG. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc Natl Acad Sci. 1998;95:12641–6.

    Article  CAS  Google Scholar 

  56. Arnold R, Russell J, Champion W, Gauthier J. Bactericidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism. Infect Immun. 1981;32:655–60.

    CAS  Google Scholar 

  57. Reyes R, Manjarrez H, Drago M. El hierro and la virulencia bacteriana. Enf Inf Microbiol. 2005;25:104–7.

    Google Scholar 

  58. Leitch E, Willcox M. Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J Med Microbiol. 1999;48:867–71.

    Article  CAS  Google Scholar 

  59. Coughlin RT, Tonsager S, McGroarty EJ. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli. Biochemistry. 1983;22:2002–7.

    Article  CAS  Google Scholar 

  60. Roseanu A, Florian P, Condei M, Cristea D, Damian M. Antibacterial activity of Lactoferrin and Lactoferricin against oral Streptococci. Rom Biotechnol Lett. 2010;15:5789–92.

    Google Scholar 

  61. Wakabayashi H, Kondo I, Kobayashi T, Yamauchi K, Toida T, Iwatsuki K, Yoshie H. Periodontitis, periodontopathic bacteria and lactoferrin. Biometals. 2010;23:419–24.

    Article  CAS  Google Scholar 

  62. Van der Strate B, Beljaars L, Molema G, Harmsen M, Meijer D. Antiviral activities of lactoferrin. Antiviral Res. 2001;52:225–39.

    Article  CAS  Google Scholar 

  63. Andersen JH, Jenssen H, Sandvik K, Gutteberg TJ. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol. 2004;74:262–71.

    Article  CAS  Google Scholar 

  64. Hasegawa K, Motsuchi W, Tanaka S, Dosako S. Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol. 1994;47:73–85.

    Article  CAS  Google Scholar 

  65. Marr AK, Jenssen H, Moniri MR, Hancock R, Panté N. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie. 2009;91:160–4.

    Article  CAS  Google Scholar 

  66. Viani RM, Gutteberg TJ, Lathey JL, Spector SA. Lactoferrin inhibits HIV-1 replication in vitro and exhibits synergy when combined with zidovudine. AIDS. 1999;13:1273–4.

    Article  CAS  Google Scholar 

  67. Beljaars L, van der Strate BW, Bakker HI, Reker-Smit C, van Loenen-Weemaes A-M, Wiegmans FC, Harmsen MC, Molema G, Meijer DK. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Res. 2004;63:197–208.

    Article  CAS  Google Scholar 

  68. Andersen JH, Osbakk SA, Vorland LH, Traavik T, Gutteberg TJ. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 2001;51:141–9.

    Article  CAS  Google Scholar 

  69. Ikeda M, Nozaki A, Sugiyama K, Tanaka T, Naganuma A, Tanaka K, Sekihara H, Shimotohno K, Saito M, Kato N. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res. 2000;66:51–63.

    Article  CAS  Google Scholar 

  70. Ikeda M, Sugiyama K, Tanaka T, Tanaka K, Sekihara H, Shimotohno K, Kato N. Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes. Biochem Biophys Res Commun. 1998;245:549–53.

    Article  CAS  Google Scholar 

  71. Sato R, Inanami O, Tanaka Y, Takase M, Naito Y. Oral administration of bovine lactoferrin for treatment of intractable stomatitis in feline immunodeficiency virus (FIV)-positive and FIV-negative cats. Am J Vet Res. 1996;57:1443–6.

    CAS  Google Scholar 

  72. Beaumont SL, Maggs DJ, Clarke HE. Effects of bovine lactoferrin on in vitro replication of feline herpesvirus. Vet Ophthalmol. 2003;6:245–50.

    Article  CAS  Google Scholar 

  73. Seganti L, Di Biase AM, Marchetti M, Pietrantoni A, Tinari A, Superti F. Antiviral activity of lactoferrin towards naked viruses. Biometals. 2004;17:295–9.

    Article  CAS  Google Scholar 

  74. Arnold R, Brewer M, Gauthier J. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun. 1980;28:893–8.

    CAS  Google Scholar 

  75. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol. 1993;182:97–105.

    Article  CAS  Google Scholar 

  76. Wakabayashi H, Abe S, Okutomi T, Tansho S, Kawase K, Yamaguchi H. Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol Immunol. 1996;40:821–5.

    Article  CAS  Google Scholar 

  77. Kuipers M, De Vries H, Eikelboom M, Meijer D, Swart P. Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against ClinicalCandida Isolates. Antimicrob Agents Chemother. 1999;43:2635–41.

    CAS  Google Scholar 

  78. Kondori N, Baltzer L, Dolphin G, Mattsby-Baltzer I. Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial αβ region. Int J Antimicrob Agents. 2011;37:51–7.

    Article  CAS  Google Scholar 

  79. Valenti P, Visca P, Antonini G, Orsi N. Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol Lett. 1986;33:271–5.

    Article  CAS  Google Scholar 

  80. Xu Y, Samaranayake Y, Samaranayake L, Nikawa H. In vitro susceptibility of Candida species to lactoferrin. Med Mycol. 1999;37:35–41.

    Article  CAS  Google Scholar 

  81. Nikawa H, Samaranayake L, Hamada T. Modulation of the anti-candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro. Arch Oral Biol. 1995;40:581–4.

    Article  CAS  Google Scholar 

  82. Nikawa H, Samaranayake L, Tenovuo J, Pang K, Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993;38:1057–63.

    Article  CAS  Google Scholar 

  83. Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ, Gallin JI. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J Immunol. 2007;178:6367–73.

    Article  CAS  Google Scholar 

  84. Lupetti A, Van Dissel J, Brouwer C, Nibbering P. Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur J Clin Microbiol Infect Dis. 2008;27:1125–9.

    Article  CAS  Google Scholar 

  85. Van der Kraan MI, Groenink J, Nazmi K, Veerman EC, Bolscher JG, Nieuw Amerongen AV. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides. 2004;25:177–83.

    Article  CAS  Google Scholar 

  86. Wakabayashi H, Uchida K, Yamauchi K, Teraguchi S, Hayasawa H, Yamaguchi H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother. 2000;46:595–602.

    Article  CAS  Google Scholar 

  87. Viejo-Díaz M, Andrés MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother. 2004;48:1242–8.

    Article  CAS  Google Scholar 

  88. Kuwata H, Yip T-T, Tomita M, Hutchens TW. Direct evidence of the generation in human stomach of an antimicrobial peptide domain (lactoferricin) from ingested lactoferrin. Biochim Biophys Acta. 1998;1429:129–41.

    Google Scholar 

  89. Dionysius D, Milne J. Antibacterial peptides of bovine lactoferrin: purification and characterization. J Dairy Sci. 1997;80:667–74.

    Article  CAS  Google Scholar 

  90. Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan-and arginine-containing peptides. Biochem Cell Biol. 2002;80:49–63.

    Article  CAS  Google Scholar 

  91. Yamauchi K, Tomita M, Giehl T, Ellison R. r., Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 1993;61:719–28.

    CAS  Google Scholar 

  92. Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother. 1999;43:1267–9.

    CAS  Google Scholar 

  93. Wakabayashi H, Hiratani T, Uchida K, Yamaguchi H. Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother. 1996;1:185–9.

    Article  CAS  Google Scholar 

  94. Valenti P, Antonini G, Siciliano R, Rega B, Superti F, Marchetti M, Ammendolia M, Seganti L, Shimazaki K, Tsuda H. Antiviral activity of lactoferrin-derived peptides. Paper presented at: Lactoferrin: structure, function and applications. Proceedings of the 4th International Conference on Lactoferrin: Structure, Function and Applications, held in Sapporo, Japan 18-22 May 1999. 2000.

    Google Scholar 

  95. Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki KI, Azuma I. Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Cancer Sci. 1997;88:184–90.

    Google Scholar 

  96. Iigo M, Kuhara T, Ushida Y, Sekine K, Moore MA, Tsuda H. Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin Exp Metastasis. 1999;17:43–9.

    Article  Google Scholar 

  97. Kuwata H, Yip T-T, Yip CL, Tomita M, Hutchens TW. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem Biophys Res Commun. 1998;245:764–73.

    Article  CAS  Google Scholar 

  98. Rekdal Ø, Andersen J, Vorland LH, Svendsen JS. Construction and synthesis of lactoferricin derivatives with enhanced antibacterial activity. J Pept Sci. 1999;5:32–45.

    Google Scholar 

  99. Strøm MB, Svendsen JS, Rekdal Ø. Antibacterial activity of 15-residue lactoferricin derivatives. J Pept Res. 2000;56:265–74.

    Article  Google Scholar 

  100. Kang JH, Lee MK, Kim KL, Hahm KS. Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Protein Res. 1996;48:357–63.

    Article  CAS  Google Scholar 

  101. Tomita M, Takase M, Bellamy W, Shimamura S. A review: the active peptide of lactoferrin. Pediatr Int. 1994;36:585–91.

    Article  CAS  Google Scholar 

  102. Yoshimaki T, Sato S, Tsunori K, Shino H, Iguchi S, Arai Y, Ito K, Ogiso B. Bone regeneration with systemic administration of lactoferrin in non-critical-sized rat calvarial bone defects. J Oral Sci. 2013;55:343–8.

    Article  CAS  Google Scholar 

  103. Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A. Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone. 2011;48:1028–35.

    Article  CAS  Google Scholar 

  104. Melton LJ, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL. Relationship of bone turnover to bone density and fractures. J Bone Miner Res. 1997;12:1083–91.

    Article  Google Scholar 

  105. Grey A, Banovic T, Zhu Q, Watson M, Callon K, Palmano K, Ross J, Naot D, Reid IR, Cornish J. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol. 2004;18:2268–78.

    Article  CAS  Google Scholar 

  106. Grey A, Zhu Q, Watson M, Callon K, Cornish J. Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol Cell Endocrinol. 2006;251:96–102.

    Article  CAS  Google Scholar 

  107. Lorget F, Clough J, Oliveira M, Daury M-C, Sabokbar A, Offord E. Lactoferrin reduces in vitro osteoclast differentiation and resorbing activity. Biochem Biophys Res Commun. 2002;296:261–6.

    Article  CAS  Google Scholar 

  108. Takayama Y, Mizumachi K. Effect of lactoferrin-embedded collagen membrane on osteogenic differentiation of human osteoblast-like cells. J Biosci Bioeng. 2009;107:191–5.

    Article  CAS  Google Scholar 

  109. Hou JM, Xue Y, Lin QM. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol Sin. 2012;33:1277–84.

    Article  CAS  Google Scholar 

  110. Wang X, Guo H, Zhang W, Wen PC, Zhang H, Ren FZ. Effect of iron saturation level of lactoferrin on osteogenic activity in vitro and in vivo. J Dairy Sci. 2013;96:33–9.

    Article  CAS  Google Scholar 

  111. Cornish J, Naot D. Lactoferrin as an effector molecule in the skeleton. Biometals. 2010;23:425–30.

    Article  CAS  Google Scholar 

  112. Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep. 2006;7:782–6.

    Article  CAS  Google Scholar 

  113. Raucci A, Bellosta P, Grassi R, Basilico C, Mansukhani A. Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. J Cell Physiol. 2008;215:442–51.

    Article  CAS  Google Scholar 

  114. Stanton LA, Beier F. Inhibition of p38 MAPK signaling in chondrocyte cultures results in enhanced osteogenic differentiation of perichondral cells. Exp Cell Res. 2007;313:146–55.

    Article  CAS  Google Scholar 

  115. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  CAS  Google Scholar 

  116. Hipskind RA, Bilbe G. MAP kinase signaling cascades and gene expression in osteoblasts. Front Biosci. 1998;3:d804–16.

    Article  CAS  Google Scholar 

  117. Wang X, Goh CH, Li B. p38 mitogen-activated protein kinase regulates osteoblast differentiation through osterix. Endocrinology. 1629-1637;2007:148.

    Google Scholar 

  118. Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709–18.

    Article  CAS  Google Scholar 

  119. Wright T, Goodman S. Implant wear in total joint replacement: clinical and biologic issues, material and design considerations: Symposium. Oakbrook: American Academy of Orthopaedic Surgeons; 2001.

    Google Scholar 

  120. Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprosthetic osteolysis. J Bone Joint Surg. 2000;82:1478–8.

    Google Scholar 

  121. Li X, Udagawa N, Takami M, Sato N, Kobayashi Y, Takahashi N. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology. 2003;144:4999–5005.

    Article  CAS  Google Scholar 

  122. Mulder AM, Connellan PA, Oliver CJ, Morris CA, Stevenson LM. Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutr Res. 2008;28:583–9.

    Article  CAS  Google Scholar 

  123. Hwang SA, Kruzel ML, Actor JK. Immunomodulatory effects of recombinant lactoferrin during MRSA infection. i. 2014;20:157–63.

    CAS  Google Scholar 

  124. Legrand D, Mazurier J. A critical review of the roles of host lactoferrin in immunity. Biometals. 2010;23:365–76.

    Article  CAS  Google Scholar 

  125. Legrand D, Elass E, Pierce A, Mazurier J. Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties. Biometals. 2004;17:225–9.

    Article  CAS  Google Scholar 

  126. Ward PP, Mendoza-Meneses M, Park PW, Conneely OM. Stimulus-dependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice. Am J Pathol. 2008;172:1019–29.

    Article  CAS  Google Scholar 

  127. Legrand D, Elass E, Carpentier M, Mazurier J. Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol. 2006;84:282–90.

    Article  CAS  Google Scholar 

  128. Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin. Cell Mol Life Sci. 2005;62:2549–59.

    Article  CAS  Google Scholar 

  129. Wakabayashi H, Takase M, Tomita M. Lactoferricin derived from milk protein lactoferrin. Curr Pharm Des. 2003;9:1277–87.

    Article  CAS  Google Scholar 

  130. Kanyshkova T, Buneva V, Nevinsky G. Lactoferrin and its biological functions. Biochemistry (Mosc). 2001;66:1–7.

    Article  CAS  Google Scholar 

  131. Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr. 2008;49:203–17.

    Article  CAS  Google Scholar 

  132. Tuccari G, Barresi G. Lactoferrin in human tumours: immunohistochemical investigations during more than 25 years. Biometals. 2011;24:775–84.

    Article  CAS  Google Scholar 

  133. McKeown ST, Lundy FT, Nelson J, Lockhart D, Irwin CR, Cowan CG, Marley JJ. The cytotoxic effects of human neutrophil peptide-1 (HNP1) and lactoferrin on oral squamous cell carcinoma (OSCC) in vitro. Oral Oncol. 2006;42:685–90.

    Article  CAS  Google Scholar 

  134. Yang N, Strøm MB, Mekonnen SM, Svendsen JS, Rekdal Ø. The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. J Pept Sci. 2004;10:37–46.

    Article  CAS  Google Scholar 

  135. Duarte D, Nicolau A, Teixeira J, Rodrigues L. The effect of bovine milk lactoferrin on human breast cancer cell lines. J Dairy Sci. 2011;94:66–76.

    Article  CAS  Google Scholar 

  136. Tsuda H, Kozu T, Iinuma G, Ohashi Y, Saito Y, Saito D, Akasu T, Alexander DB, Futakuchi M, Fukamachi K. Cancer prevention by bovine lactoferrin: from animal studies to human trial. Biometals. 2010;23:399–409.

    Article  CAS  Google Scholar 

  137. Wolf JS, Li G, Varadhachary A, Petrak K, Schneyer M, Li D, Ongkasuwan J, Zhang X, Taylor RJ, Strome SE. Oral lactoferrin results in T cell–dependent tumor inhibition of head and neck squamous cell carcinoma in vivo. Clin Cancer Res. 2007;13:1601–10.

    Article  CAS  Google Scholar 

  138. Varadhachary A, Wolf JS, Petrak K, O’Malley BW, Spadaro M, Curcio C, Forni G, Pericle F. Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. Int J Cancer. 2004;111:398–403.

    Article  CAS  Google Scholar 

  139. Xiao Y, Monitto CL, Minhas KM, Sidransky D. Lactoferrin down-regulates G1 cyclin-dependent kinases during growth arrest of head and neck cancer cells. Clin Cancer Res. 2004;10:8683–6.

    Article  CAS  Google Scholar 

  140. Damiens E, El Yazidi I, Mazurier J, Duthille I, Spik G, Boilly-Marer Y. Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem. 1999;74:486–98.

    Article  CAS  Google Scholar 

  141. Kuhara T, Iigo M, Itoh T, Ushida Y, Sekine K, Terada N, Okamura H, Tsuda H. Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr Cancer. 2000;38:192–9.

    Article  CAS  Google Scholar 

  142. Wang WP, Iigo M, Sato J, Sekine K, Adachi I, Tsuda H. Activation of Intestinal Mucosal Immunity in Tumor-bearing Mice by Lactoferrin. Cancer Sci. 2000;91:1022–7.

    CAS  Google Scholar 

  143. Ming YC, Ho WJ, Xia J, Bun NT. Studies on anticancer activities of lactoferrin and lactoferricin. Curr Protein Pept Sci. 2013;14:492–503.

    Article  CAS  Google Scholar 

  144. Sakai T, Banno Y, Kato Y, Nozawa Y, Kawaguchi M. Pepsin-digested bovine lactoferrin induces apoptotic cell death with JNK/SAPK activation in oral cancer cells. J Pharmacol Sci. 2005;98:41–8.

    Article  CAS  Google Scholar 

  145. Eliassen LT, Berge G, Sveinbjornsson B, Svendsen JS, Vorland LH, Rekdal Ø. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res. 2002;22:2703–10.

    CAS  Google Scholar 

  146. Yang N, Rekdal Ø, Stensen W, Svendsen J. Enhanced antitumor activity and selectivity of lactoferrin-derived peptides. J Pept Res. 2002;60:187–97.

    Article  CAS  Google Scholar 

  147. Ma J, Guan R, Shen H, Lu F, Xiao C, Liu M, Kang T. Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food Chem Toxicol. 2013;59:72–7.

    Article  CAS  Google Scholar 

  148. Lindmark-Månsson H, Åkesson B. Antioxidative factors in milk. Br J Nutr. 2000;84:103–10.

    Article  Google Scholar 

  149. Baker HM, Anderson BF, Baker EN. Dealing with iron: common structural principles in proteins that transport iron and heme. Proc Natl Acad Sci. 2003;100:3579–83.

    Article  CAS  Google Scholar 

  150. Satué-Gracia MT, Frankel EN, Rangavajhyala N, German JB. Lactoferrin in infant formulas: effect on oxidation. J Agric Food Chem. 2000;48:4984–90.

    Article  CAS  Google Scholar 

  151. Wang Y, Xu C, An Z, Liu J, Feng J. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim Feed Sci Technol. 2008;140:326–36.

    Article  CAS  Google Scholar 

  152. Maneva A, Taleva B, Maneva L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z Naturforsch C. 2003;58:256–62.

    Article  CAS  Google Scholar 

  153. Safaeian L, Zabolian H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol. 2014;2014:943523–9.

    Article  Google Scholar 

  154. Kanyshkova TYG, Babina SE, Semenov DV, Isaeva NY, Vlassov AV, Neustroev KN, Kul’minskaya AA, Buneva VN, Nevinsky GA. Multiple enzymic activities of human milk lactoferrin. Eur J Biochem. 2003;270:3353–61.

    Google Scholar 

  155. Öztafl YE, Özgünefl N. Lactoferrin: a multifunctional protein. Adv Mol Med. 2005;1:149–54.

    Google Scholar 

  156. Semenov DV, Kanyshkova TG, Buneva VN, Nevinsky GA. Human milk lactoferrin binds ATP and dissociates into monomers. IUBMB Life. 1999;47:177–84.

    Article  CAS  Google Scholar 

  157. Kanyshkova TYG, Semenov DV, Buneva VN, Nevinsky GA. Human milk lactoferrin binds two DNA molecules with different affinities. FEBS Lett. 1999;451:235–7.

    Article  CAS  Google Scholar 

  158. Furmanski P, Li Z, Fortuna MB, Swamy C, Das MR. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. 1989;170:415–29.

    Article  CAS  Google Scholar 

  159. Ono T, Morishita S, Murakoshi M. Novel function of bovine lactoferrin in lipid metabolism: visceral fat reduction by enteric-coated lactoferrin. Pharma Nutrition. 2013;1:32–4.

    Article  CAS  Google Scholar 

  160. Ono T, Murakoshi M, Suzuki N, Iida N, Ohdera M, Iigo M, Yoshida T, Sugiyama K, Nishino H. Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr. 1688-1695;2010:104.

    Google Scholar 

  161. Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, Jiang X. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations. J Control Release. 2009;134:55–61.

    Article  CAS  Google Scholar 

  162. Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm. 2011;415:273–83.

    Article  CAS  Google Scholar 

  163. Yu Y, Pang Z, Lu W, Yin Q, Gao H, Jiang X. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm Res. 2012;29:83–96.

    Article  CAS  Google Scholar 

  164. Huang R, Ke W, Liu Y, Wu DD, Feng LY, Jiang C, Pei YY. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci. 2010;290:123–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding and sponsorship. This work was financially supported by the National Natural Science Foundation (31371805), the National Science & Technology Pillar Program (2013BAD18B06-03), the Fundamental Research Funds for the Central Universities (HIT.BRETIII.201231), and the Program of New Century Excellent Talents in University (NCET-11-0796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Du, M., Liu, M., Fan, F., Shi, P., Tu, M. (2017). Structure, Function, and Nutrition of Lactoferrin. In: Zhao, G. (eds) Mineral Containing Proteins . Springer, Singapore. https://doi.org/10.1007/978-981-10-3596-8_2

Download citation

Publish with us

Policies and ethics