Skip to main content

Structure, Function, and Nutrition of Ferritin from Foodstuffs

  • Chapter
  • First Online:
Mineral Containing Proteins

Abstract

Iron deficiency anemia (IDA) is the most common and widespread nutritional disorder in the world, so it is crucial to explore a safe and efficient functional factor for iron supplement. Fortunately, ferritin as a class of naturally occurring iron storage proteins can accommodate 4500 iron atoms within its inner cavity. Thus, it seems to be a suitable candidate as novel, utilizable forms of iron supplementary for populations with a low iron status. Additionally, ferritin also can be used as a vehicle for bioactive compounds delivery after the remove of the iron. This chapter focuses on recent progress in structure, function, and nutrition of ferritin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison PM, Arosio P. Ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.

    Article  Google Scholar 

  2. Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, Harford JB. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240:924–8.

    Article  CAS  Google Scholar 

  3. Butt J, Kim HY, Basilion JP, Cohen S, Iwai K, Philpott CC, Altschul S, Klausner RD, Rouault TA. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci U S A. 1996;93:4345–9.

    Article  CAS  Google Scholar 

  4. Philpott CC, Klausner RD, Rouault TA. The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci U S A. 1994;91:7321–5.

    Article  CAS  Google Scholar 

  5. Shi H, Bencze KZ, Stemmler TL, Philpott CC. A cytosolic iron chaperone that delivers iron to ferritin. Science. 2008;320:1207–10.

    Article  CAS  Google Scholar 

  6. Leidgens S, Bullough KZ, Shi H, Li F, Shakoury-Elizeh M, Yabe T, Subramanian P, Hsu E, Natarajan N, Nandal A, Stemmler TL, Philpott CC. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem. 2013;288:17791–802.

    Article  CAS  Google Scholar 

  7. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.

    Article  CAS  Google Scholar 

  8. Mancias JD, Pontano Vaites L, Nissim S, Biancur DE, Kim AJ, Wang X, Liu Y, Goessling W, Kimmelman AC, Harper JW. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 2015;4:10308–27.

    Article  Google Scholar 

  9. Yun S, Yang S, Huang L, Qi X, Mu P, Zhao G. Isolation and characterization of a new plant ferritin from broad bean (Vicia faba) seed with higher stability compared to pea seed ferritin. Food Res Int. 2012;48:271–6.

    Article  CAS  Google Scholar 

  10. Barceló F, Miralles F, Otero Areán C. Purification and characterization of ferritin from alfalfa seeds. J Inorg Biochem. 1997;66:23–7.

    Article  Google Scholar 

  11. Lv C, Liu W, Zhao G. A novel homopolymeric plant ferritin from chickpea seeds with high stability. Eur Food Res Technol. 2014;239:777–83.

    Article  CAS  Google Scholar 

  12. Crichton RR, Ponce-Ortiz Y, Koch MH, Parfait R, Stuhrmann HB. Isolation and characterization of plant ferritin from pea (Pisum sativum) and Lentil (Lens esculenta). Biochem J. 1978;171:349–56.

    Article  CAS  Google Scholar 

  13. Galatro A, Robello E, Puntarulo S. Soybean ferritin: isolation, characterization, and free radical generation. J Integr Plant Biol. 2012;54:45–54.

    Article  CAS  Google Scholar 

  14. Hoppler M, Schonbàchler A, Meile L, Hurrell RF, Walczyk T. Ferritin-iron is released during boiling and in vitro gastric digestion. Nutrition. 2008;54:878–84.

    Google Scholar 

  15. Tarantino D, Morandini P, Ramirez L, Soave C, Murgia I. Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism. Plant Physiol Biochem. 2011;49:520–9.

    Article  CAS  Google Scholar 

  16. Laulhere JP, Lescure AM, Briat JF. Purification and characterization of ferritins from maize, pea, and soya bean seeds. Distribution in various pea organs. J Biol Chem. 1988;263:10289–94.

    CAS  Google Scholar 

  17. Lakshmi Deepa G, Sashidhar RB, Deshpande V. Purification and characterization of phycoferritin from the blue-green alga, Arthrospira (Spirulina) platensis. J Appl Phycol. 2008;20:359–66.

    Article  CAS  Google Scholar 

  18. Masuda T, Yamamoto A, Toyohara H. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis. Biosci Biotechnol Biochem. 2015;79:74–81.

    Article  CAS  Google Scholar 

  19. Nagasaka S, Nishizawa NK, Negishi T, Satake K, Mori S, Yoshimura E. Novel iron-storage particles may play a role in aluminum tolerance of Cyanidimin caldarium. Planta. 2002;215:399–404.

    Article  CAS  Google Scholar 

  20. Petit JM, Briat JF, Lobreaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J. 2001;359:575–82.

    Article  CAS  Google Scholar 

  21. Theil EC. Iron, ferritin, and nutrition. Annu Rev Nutr. 2004;24:327–43.

    Article  CAS  Google Scholar 

  22. Lönnerdal B. Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr. 2009;89:1680S–5S.

    Article  CAS  Google Scholar 

  23. Fobisloisy I, Loridon K, Lobreaux S, Lebrun M, Briat JF. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem. 1995;231:609–19.

    Article  CAS  Google Scholar 

  24. Masuda T, Goto F, Yoshihara T. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J Biol Chem. 2001;276:19575–9.

    Article  CAS  Google Scholar 

  25. Masuda T, Goto F, Yoshihara T, Ezure T, Suzuki T, Kobayashi S, Shikata M, Utsumi S. Construction of homo- and heteropolymers of plant ferritin subunits using an in vitro protein expression system. Protein Expr Purif. 2007;56:237–46.

    Article  CAS  Google Scholar 

  26. Dong X, Sun Q, Wei D, Li J, Li J, Tang B, Jia Q, Hu W, Zhao Y, Hua ZC. A novel ferritin gene, SferH-5, reveals heterogeneity of the 26.5-kDa subunit of soybean (Glycine max) seed ferritin. FEBS Lett. 2007;581:5796–802.

    Article  CAS  Google Scholar 

  27. Proudhon D, Wei J, Briat JF, Theil EC. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol. 1996;42:325–36.

    Article  CAS  Google Scholar 

  28. Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A. 1991;88:8222–6.

    Article  CAS  Google Scholar 

  29. Proudhon D, Briat JF, Lescure AM. Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol. 1989;90:586–90.

    Article  Google Scholar 

  30. Gaymard F, Boucherez J, Briat JF. Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem J. 1996;318:67–73.

    Article  CAS  Google Scholar 

  31. Wei J, Theil EC. Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem. 2000;275:17488–93.

    Article  CAS  Google Scholar 

  32. Petit JM, Wuytswinkel O, Briat JF, Lobreaux S. Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem. 2001;276:5584–90.

    Article  CAS  Google Scholar 

  33. Tarantino D, Petit JM, Lobreaux S, Briat JF, Soave C, Murgia I. Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta. 2003;217:709–16.

    Article  CAS  Google Scholar 

  34. Duc C, Cellier F, Lobreaux S, Briat JF, Gaymard F. Regulation of iron homeostasis in Arabidopsis thaliana by the clock regulator time for coffee. J Biol Chem. 2009;284:36271–81.

    Article  CAS  Google Scholar 

  35. Briat J-F, Duc C, Ravet K, Gaymard F. Ferritins and iron storage in plants. Biochim Biophys Acta. 1800;2010:806–14.

    Google Scholar 

  36. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot. 2010;105:811–22.

    Article  CAS  Google Scholar 

  37. Laufberger V. Sur la cristallisation de la ferritine. Bull Soc Chim Biol. 1937;19:1575–82.

    CAS  Google Scholar 

  38. Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JMA, Livingstone JC, Treffry A, Luzzago A, Levi S, Paolo A, Gianni C. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contact. Nature. 1991;349:541–4.

    Article  CAS  Google Scholar 

  39. Ha Y, Shi D, Small GW, Theil EC, Allewell NM. Crystal structure of bullfrog M ferritin at 2.8 Å resolution: analysis of subunit interactions and the binuclear metal center. J Biol Inorg Chem. 1999;4:243–56.

    Article  CAS  Google Scholar 

  40. Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structure of the Fe3+ and Zn2+ derivatives. J Mol Biol. 2001;307:587–603.

    Article  CAS  Google Scholar 

  41. Masuda T, Goto F, Yoshihara T, Mikami B. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. J Biol Chem. 2010;285:4049–59.

    Article  CAS  Google Scholar 

  42. Crichton RR, Declercq J. X-ray structures of ferritins and related proteins. Biochim Biophys Acta. 1800;2010:706–18.

    Google Scholar 

  43. Sun S, Arosio P, Levi S, Chasteen ND. Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin, and site-directed mutants. Biochemistry. 1993;32:9362–9.

    Article  CAS  Google Scholar 

  44. Crichton RR, Herbas A, Chavez-Alba O, Roland F. Identification of catalytic residues involved in iron uptake by L-chain ferritins. J Biol Inorg Chem. 1996;1:567–74.

    Article  CAS  Google Scholar 

  45. Chasteen ND, Harrison PM. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol. 1999;126:182–94.

    Article  CAS  Google Scholar 

  46. Boyd D, Vecoli C, Belcher DM, Jain SK, Drysdale JW. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem. 1985;260:11755–61.

    CAS  Google Scholar 

  47. Leibold EA, Aziz N, Brown AJ, Munro HN. Conservation in rat liver of light and heavy subunit sequences of mammalian ferritin. Presence of unique octopeptide in the light subunit. J Biol Chem. 1984;259:4327–34.

    CAS  Google Scholar 

  48. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND. Multiple pathways for mineral core formation in mammalian apoferritin: the role of hydrogen peroxide. Biochemistry. 2003;42:3142–50.

    Article  CAS  Google Scholar 

  49. Zamocky M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol. 1999;72:19–66.

    Article  CAS  Google Scholar 

  50. Laulhère JP, Briat JF. Iron release and uptake by plant ferritin as affected by pH, reduction and chelation. Biochem J. 1993;290:693–9.

    Article  Google Scholar 

  51. Lobréaux S, Massenet O, Briat JF. Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol. 1992;19:563–75.

    Article  Google Scholar 

  52. Wuytswinkel O, Savino G, Briat JF. Purification and characterization of recombinant pea seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro. Biochem J. 1995;305:253–61.

    Article  Google Scholar 

  53. Lobréaux S, Briat JF. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J. 1991;274:601–6.

    Article  Google Scholar 

  54. Li C, Hu X, Zhao G. Two different H-type subunits from pea seed (Pisum sativum) ferritin that are responsible for fast Fe(II) oxidation. Biochimie. 2009;91:230–9.

    Article  CAS  Google Scholar 

  55. Dong X, Tang B, Li J, Xu Q, Fang S, Hua Z. Expression and purification of intact and functional soybean (Glycine max) seed ferritin complex in Escherichia coli. J Microbiol Biotechnol. 2008;18:299–307.

    CAS  Google Scholar 

  56. Wicks RE, Entsch B. Functional genes found for three different plant ferritin subunits in the legume Vigna unguiculata. Biochem Biophys Res Commun. 1993;192:813–9.

    Article  CAS  Google Scholar 

  57. Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem. 1990;265:18339–44.

    CAS  Google Scholar 

  58. Fu X, Deng J, Yang H, Masuda T, Goto F, Yoshihara T, Zhao G. A novel EP-involved pathway for iron release from soya bean seed ferritin. Biochem J. 2010;427:313–21.

    Article  CAS  Google Scholar 

  59. Yang H, Fu X, Li M, Chen B, Zhao G. Protein association and dissociation regulated by extension peptide: a mode for iron control by plant ferritin in seeds. Plant Physiol. 2010;154:1481–91.

    Article  CAS  Google Scholar 

  60. Laulhère JP, Laboure AM, Briat JF. Mechanism of the transition from plant ferritin to phytosiderin. J Biol Chem. 1989;264:3629–35.

    Google Scholar 

  61. Bou-Abdallah F, Zhao G, Biasiotto G, Poli M, Arosio P, Chasteen ND. Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W. J Am Chem Soc. 2008;130:17801–11.

    Article  CAS  Google Scholar 

  62. Zhao G, Su M, Chasteen ND. μ-1, 2-Peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer. J Mol Biol. 2005;352:467–77.

    Article  CAS  Google Scholar 

  63. Xu B, Chasteen ND. Iron oxidation chemistry in ferritin: increasing Fe/O2 stoichiometry during core formation. J Biol Chem. 1991;266:19965–70.

    CAS  Google Scholar 

  64. Treffry A, Bauminger ER, Hechel D, Hodson NW, Nowik I, Yewdall SJ, Harrison PM. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993;296:721–8.

    Article  CAS  Google Scholar 

  65. Bou-Abdallah F. The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta. 1800;2010:719–31.

    Google Scholar 

  66. Crichton RR, Roman F. A novel mechanism for ferritin iron oxidation and deposition. J Mol Catal. 1978;4:75–82.

    Article  CAS  Google Scholar 

  67. Bou-Abdallah F, Lewin AC, Brun NE, Moore GR, Chasteen ND. Iron detoxification properties of Escherichia coli bacterioferritin: attenuation of oxyradical chemistry. J Biol Chem. 2002;277:37064–9.

    Article  CAS  Google Scholar 

  68. Yang X, Chen-Barrett Y, Arosio P, Chasteen ND. Reaction paths of iron oxidation and hydrolysis in horse spleen and recombinant human ferritins. Biochemistry. 1998;37:9743–50.

    Article  CAS  Google Scholar 

  69. Li C, Fu X, Qi X, Hu X, Chasteen ND, Zhao G. Protein association and dissociation regulated by ferric ion: a novel pathway for oxidative deposition of iron in pea seed ferritin. J Biol Chem. 2009;284:16743–51.

    Article  CAS  Google Scholar 

  70. Deng J, Cheng J, Liao X, Zhang T, Leng X, Zhao G. Comparative study on iron release from soybean (Glycine max) seed ferritin induced by anthocyanins and ascorbate. J Agric Food Chem. 2010;58:635–41.

    Article  CAS  Google Scholar 

  71. Granick S. Ferritin: its properties and significance for iron metabolism. Chem Rev. 1946;38:379–403.

    Article  CAS  Google Scholar 

  72. Friedberg F. Some properties of apoferritin isolated from guinea pig liver. Can J Biochem Physiol. 1962;40:983–7.

    Article  CAS  Google Scholar 

  73. Cetinkaya N, Lengemann FW, Kogan P. Isolation, purification and characterization of bovine spleen ferritin. Comp Biochem Physiol. 1985;80:773–8.

    CAS  Google Scholar 

  74. Gonzalez del Barrio P, Martin Mateo MC. Comparative study of ferritins from dove Columbia oena and chicken Gallus domesticus livers. Comp Biochem Physiol. 1983;76B:567–8.

    CAS  Google Scholar 

  75. Santos Benito FF, Martin Mateo MC. Isolation, purification and characterization of spleen ferritin of Gallus domesticus L. Comp Biochem Physiol B. 1983;74:643–5.

    Article  CAS  Google Scholar 

  76. Kanner J, Doll L. Ferritin in turkey tissue: a source of catalytic iron ions for lipid peroxidation. J Agric Food Chem. 1991;39:247–9.

    Article  CAS  Google Scholar 

  77. Díez JM, Agapito MT, Recio JM. Isolation and purification of duck liver ferritin. Rev Esp Fisiol. 1985;41:341–4.

    Google Scholar 

  78. Mete A, Dorrestein GM, Marx JJM, Lemmens AG, Beynen AC. A comparative study of iron reaction mynahs, doves and rats. Avian Pathol. 2001;30:479–86.

    Article  CAS  Google Scholar 

  79. Suryakala S, Deshpande V. Puri¢cation and characterization of liver ferritins from different animal species. Vet Res Commun. 1999;23:165–81.

    Article  CAS  Google Scholar 

  80. Zhang X, ei W W, Wu H, Xu H, Chang K, Zhang Y. Gene cloning and characterization of ferritin H and M subunits from large yellow croaker (Pseudosciaena crocea). Fish Shellfish Immunol. 2010;28:735–42.

    Article  CAS  Google Scholar 

  81. Dickey LF, Sreedharan S, Theil EC, Didsbury JR, Wang YH, Kaufman RE. Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin. A comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J Biol Chem. 1987;262:7901–7.

    Google Scholar 

  82. Hsieh S, Chiu Y, Kuo C. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2006;21:279–83.

    Article  CAS  Google Scholar 

  83. Harrison PM, Banyard SH, Hoare RJ, Russell SM, Treffry A. The structure and function of ferritin. Ciba Found Symp. 1976;51:19–40.

    Google Scholar 

  84. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99:3505–16.

    Article  CAS  Google Scholar 

  85. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, Cabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood. 1999;94:2128–34.

    CAS  Google Scholar 

  86. Picard V, Renaudie F, Porcher C, Hentze MW, Grandchamp B, Beaumont C. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood. 1996;87:2057–64.

    CAS  Google Scholar 

  87. Kakhlon O, Gruenbaum Y, Cabantchik ZI. Repression of the heavy ferritin chain increases the labile iron pool of human K562 cells. Biochem J. 2001;356:311–6.

    Article  CAS  Google Scholar 

  88. Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800:760–9.

    Article  CAS  Google Scholar 

  89. Alkhateeb AA, Connor JR. Nuclear ferritin: a new role for ferritin in cell biology. Biochim Biophys Acta. 1800;2010:793–7.

    Google Scholar 

  90. Andersen Ø, Pantopoulos K, Kao HT, Muckenthaler M, Youson JH, Pieribone V. Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis—Molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. Eur J Biochem. 1998;254:223–9.

    Article  CAS  Google Scholar 

  91. Andersen O, Dehli A, Standal H, Giskegjerde TA, Karstensen R, Rorvik K. Two ferritin subunits of Atlantic salmon (Salmo salar): cloning of the liver cDNAs and antibody preparation. Mol Mar Biol Biotechnol. 1995;4:164–70.

    CAS  Google Scholar 

  92. Giorgi A, Mignogna G, Bellapadrona G, Gattoni M, Chiaraluce R, Consalvi V, Chiancone E, Stefanini S. The unusual co-assembly of H- and M-chains in the ferritin molecule from the Antarctic teleosts Trematomus bernacchii and Trematomus newnesi. Arch Biochem Biophys. 2008;478:69–74.

    Article  CAS  Google Scholar 

  93. Mignogna G, Chiaraluce R, Consalvi V, Cavallo S, Stefanini S, Chiancone E. Ferritin from the spleen of the Antarctic teleost Trematomus bernacchii is an M-type homopolymer. Eur J Biochem. 1600-1606;2002:269.

    Google Scholar 

  94. Levi S, Yewdall SJ, Harrison PM, Santambrogio P, Cozzi A, Rovida E, Albertini A, Arosio P. Evidence that H-and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J. 1992;288:591–6.

    Article  CAS  Google Scholar 

  95. Santambrogio P, Levi S, Arosio A, Palagi L, Vecchio G, Lawson DM, Yewdall SJ, Artymiuk PJ, Harrison PM, Jappelli R, Cesareni G. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem. 1992;267:14077–83.

    CAS  Google Scholar 

  96. Pereira AS, Small W, Krebs C, Tavares P, Edmondson DE, Theil EC, Huynh BH. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Biochemistry. 1998;37:9871–6.

    Article  CAS  Google Scholar 

  97. Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL, Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984;304:551–65.

    Article  CAS  Google Scholar 

  98. Massover WH. Ultrastructure of ferritin and apoferritin: a review. Micron. 1993;24:389–437.

    Article  CAS  Google Scholar 

  99. Ford GC, Harrison PM, Rice DW, Smith JMA, Treffry A, White JL, Yariv J. Iron core mineralisation in prokaryotic ferritins. Philos Trans R Soc Lond B Biol Sci. 1984;304:551–6.

    Article  CAS  Google Scholar 

  100. Harrison PM, Fischbach FA, Hoy TG, Haggis GH. Ferric oxyhydroxide core of ferritin. Nature. 1967;216:1188–90.

    Article  CAS  Google Scholar 

  101. Towe KM, Bradley WF. Mineralogical constitution of colloidal “hydrous ferric oxides”. J Colloid Interface Sci. 1967;24:384–92.

    Article  CAS  Google Scholar 

  102. Eggleton RA, Fitzpatrick RW. New data and a revised structural model for ferrihydrite. Clays Clay Miner. 1988;36:111–4.

    Article  CAS  Google Scholar 

  103. Manceau A, Combes JM, Calas G. New data and a revised structural model for ferrihydrite: comment. Clays Clay Miner. 1990;38:331–4.

    Article  CAS  Google Scholar 

  104. Marc Michel F, Ehm L, Antao SL, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAAA, Phillips BL, Parise JB. The structure of ferrihydrite, a nanocrystalline material. ChemInform. 2007;316:1726–9.

    Google Scholar 

  105. Gálvez N, Fernández B, Sánchez P, Cuesta R, Ceolin M, Clemente-León M, Trasobares S, López-Haro M, Calvino JJ, Stéphan O, Domínguez-Vera JM. Comparative structural and chemical studies of ferritin cores with gradual removal of their Iron contents. J Am Chem Soc. 2008;130:8062–8.

    Article  CAS  Google Scholar 

  106. Treffry A, Harrison PM, Cleton MI, Bruijn W, Mann S. A note on the composition and properties of ferritin iron cores. J Inorg Biochem. 1987;31:1–6.

    Article  CAS  Google Scholar 

  107. St. Pierre TG, Chan P, Bauchspiess KR, Webb J, Betteridge S, Walton S, Dickson DPE. Synthesis, structure and magnetic properties of ferritin cores with varying composition and degrees of structural order—models for iron oxide deposition in iron-overload diseases. Coord Chem Rev. 1996;151:125–43.

    Article  CAS  Google Scholar 

  108. Wade VJ, Treffry A, Laulhere JP, Bauminger ER, Cleton MI, Mann S, Briat JF, Harrison PM. Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta. 1993;1161:91–6.

    Article  CAS  Google Scholar 

  109. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC. Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using extended X-ray absorption fine structure (EXAFS). Biochemistry. 1990;29:259–64.

    Article  CAS  Google Scholar 

  110. Mann S, Bannister JV, Williams RJP. Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgala) hemolymph and bacterial (Pseudomonas aeruginosa) cells. J Mol Biol. 1986;138:225–32.

    Article  Google Scholar 

  111. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388:482–8.

    Article  CAS  Google Scholar 

  112. Fleming MD, Trenor 3rd CC, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997;16:383–6.

    CAS  Google Scholar 

  113. Andrews NC. A genetic view of iron homeostasis. Semin Hematol. 2002;4:227–34.

    Article  CAS  Google Scholar 

  114. Baynes RD, Bothwell TH. Iron deficiency. Annu Rev Nutr. 1990;10:133–48.

    Article  CAS  Google Scholar 

  115. Fleming RF, Migas M, Holden CC, Waheed A, Britton RS, Tomatsu S, Bacon BR, Sly WS. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A. 2000;97:2214–9.

    Article  CAS  Google Scholar 

  116. Hallberg L. Perspectives on nutritional iron deficiency. Annu Rev Nutr. 2001;21:1–21.

    Article  CAS  Google Scholar 

  117. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, Frazer DM, Anderson GJ, Vulpe CD, Simpson RJ, McKie AT. Identification of an intestinal heme transporter. Cell. 2005;122:789–801.

    Article  CAS  Google Scholar 

  118. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127:917–728.

    Article  CAS  Google Scholar 

  119. Latunde-Dada GO. Is the calcium transporter a potential candidate for heme transport? Med Hypotheses. 2016;91:84–5.

    Article  CAS  Google Scholar 

  120. Ambe S, Ambe F, Nozaki T. Mossbauer study of iron in soybean seeds. J Agric Food Chem. 1987;35:292–6.

    Article  CAS  Google Scholar 

  121. Beard JL, Burton JW, Theil EC. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J Nutr. 1996;126:154–60.

    CAS  Google Scholar 

  122. Marentes E, Grusak MA. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Sci Res. 1998;8:367–75.

    Article  CAS  Google Scholar 

  123. Hoppler M, Schonbachler A, Meile L, Hurrell RF, Walczyk T. Ferritin-iron is released during boiling and in vitro gastric digestion. J Nutr. 2008;138:878–84.

    CAS  Google Scholar 

  124. May L, Morris ER, Ellis R. Chemical identity of iron in wheat by Mossbauer spectroscopy. J Agric Food Chem. 1980;28:1004–6.

    Article  CAS  Google Scholar 

  125. Lukac RJ, Aluru MR, Reddy MB. Quantification of ferritin from staple food crops. J Agric Food Chem. 2009;57:2155–61.

    Article  CAS  Google Scholar 

  126. Hoppler M, Zeder C, Walczyk T. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry. Anal Chem. 2009;81:7368–72.

    Article  CAS  Google Scholar 

  127. Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, Seaman WE. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107:3505–10.

    Article  CAS  Google Scholar 

  128. San Martin CD, Garri C, Pizarro F, Walter T, Theil EC, Nunez MT. Caco-2 intestinal epithelial cells absorb soybean ferritin by mu2 (AP2)-dependent endocytosis. J Nutr. 2008;138:659–66.

    CAS  Google Scholar 

  129. Kalgaonkar S, Lonnerdal B. Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J Nutr Biochem. 2009;20:304–11.

    Article  CAS  Google Scholar 

  130. Mayer JE, Pfeiffer WH, Beyer P. Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol. 2008;11:166–70.

    Article  CAS  Google Scholar 

  131. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol. 1999;17:282–6.

    Article  CAS  Google Scholar 

  132. Drakakaki G, Christou P, Stoger E. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res. 2000;9:445–52.

    Article  CAS  Google Scholar 

  133. Lucca P, Potrykus RHI. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet. 2001;102:392–7.

    Article  CAS  Google Scholar 

  134. Qu le Q, Yoshihara T, Ooyama A, Goto F, Takaiwa F. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta. 2005;222:225–33.

    Article  CAS  Google Scholar 

  135. Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J. 1999;17:93–7.

    Article  Google Scholar 

  136. Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, Schjorring JK, Kakei Y, Masuda H, Nishizawa NK, An G. Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A. 2009;106:22014–9.

    Article  CAS  Google Scholar 

  137. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep. 2012;2:543–50.

    Google Scholar 

  138. Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci. 2013;4:132–44.

    Article  Google Scholar 

  139. Trijatmiko KR, Duenas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AA, Tohme J, Barry G, Slamet-Loedin IH. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep. 2016;6:19792–805.

    Article  CAS  Google Scholar 

  140. Masuda H, Aung MS, Nishizawa NK. Iron biofortification of rice using different transgenic approaches. Rice (N Y). 2013;6:40–52.

    Google Scholar 

  141. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK. The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci. 2013;4:15–22.

    Article  CAS  Google Scholar 

  142. Chen L, Bai G, Yang R, Zang J, Zhou T, Zhao G. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014;149:307–12.

    Article  CAS  Google Scholar 

  143. Chen L, Bai G, Yang S, Yang R, Zhao G, Xu C, Leung W. Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Res Int. 2014;62:1147–53.

    Article  CAS  Google Scholar 

  144. Zhang T, Lv C, Chen L, Bai G, Zhao G, Xu C. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Res Int. 2014;62:183–92.

    Article  CAS  Google Scholar 

  145. Yang R, hou Z Z, Sun G, Gao Y, Xu J, Strappe P, Blanchard C, Cheng Y, Ding X. Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin. RSC Adv. 2015;5:31533–40.

    Article  CAS  Google Scholar 

  146. Li M, Viravaidya C, Mann S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small. 2007;3:1477–81.

    Article  CAS  Google Scholar 

  147. Li M, Zhang T, Yang H, Zhao G, Xu C. A novel calcium supplement prepared by plant ferritin nanocages protects against absorption inhibitors through a unique pathway. Bone. 2014;64:115–23.

    Article  CAS  Google Scholar 

  148. Perales S, Barberá R, Lagarda MJ, Farré R. Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods. J Agric Food Chem. 2005;53:3721–6.

    Article  CAS  Google Scholar 

  149. Kim M, Rho Y, Jin KS, Ahn B, Jung B, Kim H, Ree M. pH-Dependent structures of ferritin and apoferritin in solution: disassembly and reassembly. Biomacromolecules. 2011;12:1629–40.

    Article  CAS  Google Scholar 

  150. Bagchi D, Sen CK, Bagchi M, Atalay M. Antiangiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc). 2004;69:75–80.

    Article  CAS  Google Scholar 

  151. Francis FJ. Food colorants: anthocyanins. Crit Rev Food Sci Nutr. 1989;28:273–314.

    Article  CAS  Google Scholar 

  152. Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36:502–10.

    Article  CAS  Google Scholar 

  153. Engle-Stone R, Yeung A, Welch R, Glahn R. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. J Agric Food Chem. 2005;53:10276–84.

    Article  CAS  Google Scholar 

  154. Glahn RP, Wortley GM, South PK, Miller DD. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem. 2002;50:390–5.

    Article  CAS  Google Scholar 

  155. Yun S, Habicht JP, Miller DD, Glahn RP. An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr. 2004;134:2717–21.

    CAS  Google Scholar 

  156. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23:165–76.

    Article  CAS  Google Scholar 

  157. Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005;50:2276–85.

    Article  Google Scholar 

  158. Lv C, Zhao G, Lönnerdal B. Bioavailability of iron from plant and animal ferritins. J Nutr Biochem. 2015;5:523–40.

    Google Scholar 

  159. Deng J, Li M, Zhang T, Chen B, Leng X, Zhao G. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Res Int. 2011;44:33–8.

    Article  CAS  Google Scholar 

  160. Li M, Jia X, Ynag J, Deng J, Zhao G. Effect of tannic acid on properties of soybean (Glycine max) seed ferritin: a model for interaction between naturally-occurring components in foodstuffs. Food Chem. 2012;133:410–5.

    Article  CAS  Google Scholar 

  161. Wang A, Zhou K, Qi X, Zhao G. Plant ferritin association induced by EGCG inhibits protein degradation by proteases. Plant Foods Hum Nutr. 2014;69:381–91.

    Article  CAS  Google Scholar 

  162. Lv C, Bai Y, Yang S, Zhao G, Chen B. NADH induces iron release from pea seed ferritin: a model for interaction between coenzyme and protein components in foodstuffs. Food Chem. 2013;141:3851–8.

    Article  CAS  Google Scholar 

  163. Miranda G, Pelissier JP. Kinetic studies of in vivo digestion of bovine unheated skim-milk proteins in the rat stomach. J Dairy Res. 1983;50:27–36.

    Article  CAS  Google Scholar 

  164. Masuda T. Soybean ferritin forms an iron-containing oligomer in tofu even after heat treatment. J Agric Food Chem. 2015;63:8890–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 31471693 and 31671805) and China High-Tech (863) Project (2013AA102208-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taro Masuda or Guanghua Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Masuda, T., Chen, H., Zhao, G. (2017). Structure, Function, and Nutrition of Ferritin from Foodstuffs. In: Zhao, G. (eds) Mineral Containing Proteins . Springer, Singapore. https://doi.org/10.1007/978-981-10-3596-8_1

Download citation

Publish with us

Policies and ethics