Skip to main content

Potential Applications of Static Magnetic Fields (SMFs) in Cancer Treatment

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields
  • 883 Accesses

Abstract

This chapter lists current evidence (from molecular level, cellular level, animal level to patient level) and some potential mechanisms for the effects of static magnetic field (SMF) on cancer inhibition. The prospective applications of SMF alone or in combination with chemotherapy drugs, pulsed magnetic field (PMF) as well as radiotherapy in cancer treatment are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadianpour MR, Abdolmaleki P, Mowla SJ, Hosseinkhani S. Static magnetic field of 6 mT induces apoptosis and alters cell cycle in p53 mutant Jurkat cells. Electromagn Biol Med. 2013;32(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  • Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP. The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function. Bioelectromagnetics. 2003a;24(6):373–9.

    Article  PubMed  Google Scholar 

  • Aldinucci C, Garcia JB, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina GP. The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics. 2003b;24(2):109–17.

    Article  PubMed  Google Scholar 

  • Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28:51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodega G, Forcada I, Suarez I, Fernandez B. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture. Environ Res. 2005;98(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  • Brito DA, Rieder CL. The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton. 2009;66(8):437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WF, Qi H, Sun RG, Liu Y, Zhang K, Liu JQ. Static magnetic fields enhanced the potency of Cisplatin on k562 cells. Cancer Biother Radiopharm. 2010;25(4):401–8.

    Article  CAS  PubMed  Google Scholar 

  • Davies AM, Weinberg U, Palti Y. Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci. 2013;1291:86–95.

    Article  PubMed  Google Scholar 

  • De Bonis P, Doglietto F, Anile C, Pompucci A, Mangiola A. Electric fields for the treatment of glioblastoma. Expert Rev Neurother. 2012;12(10):1181–4.

    Article  PubMed  Google Scholar 

  • Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, Ghibelli L. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 1999;13(1):95–102.

    CAS  PubMed  Google Scholar 

  • Francisco AC, del Mar SAM, Irene C, Sandra RA, Josefa L, Elisa RM, Nicolas O, Isabel NM. Could radiotherapy effectiveness be enhanced by electromagnetic field treatment? Int J Mol Sci. 2013;14(7):14974–95.

    Article  PubMed Central  Google Scholar 

  • Gellrich D, Becker S, Strieth S. Static magnetic fields increase tumor microvessel leakiness and improve antitumoral efficacy in combination with paclitaxel. Cancer Lett. 2014;343(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  • Ghibelli L, Cerella C, Cordisco S, Clavarino G, Marazzi S, De Nicola M, Nuccitelli S, D’Alessio M, Magrini A, Bergamaschi A, Guerrisi V, Porfiri LM. NMR exposure sensitizes tumor cells to apoptosis. Apoptosis. 2006;11(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  • Ghodbane S, Lahbib A, Sakly M, Abdelmelek H. Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int. 2013;2013:602987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray JR, Frith CH, Parker JD. In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics. 2000;21(8):575–83.

    Article  CAS  PubMed  Google Scholar 

  • Hao Q, Wenfang C, Xia A, Qiang W, Ying L, Kun Z, Runguang S. Effects of a moderate-intensity static magnetic field and adriamycin on K562 cells. Bioelectromagnetics. 2011;32(3):191–9.

    Article  PubMed  Google Scholar 

  • Jia C, Zhou Z, Liu R, Chen S, Xia R. EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics. 2007;28(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7:65125–36.

    PubMed  PubMed Central  Google Scholar 

  • Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lei M, Erikson RL. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol. 2006;26(6):2093–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Qi H, Sun RG, Chen WF. An investigation into the combined effect of static magnetic fields and different anticancer drugs on K562 cell membranes. Tumori. 2011;97(3):386–92.

    PubMed  Google Scholar 

  • Luo Y, Ji XM, Liu JJ, Li ZY, Wang WC, Chen W, Wang JF, Liu QS, Zhang X. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry. 2016;109:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology. 2002;224(3):817–22.

    Article  PubMed  Google Scholar 

  • Nie Y, Chen Y, Mou Y, Weng L, Xu Z, Du Y, Wang W, Hou Y, Wang T. Low frequency magnetic fields enhance antitumor immune response against mouse H22 hepatocellular carcinoma. PLoS One. 2013a;8(11):e72411.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Du L, Mou Y, Xu Z, Weng L, Du Y, Zhu Y, Hou Y, Wang T. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer. 2013b;13:582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pless M, Weinberg U. Tumor treating fields: concept, evidence and future. Expert Opin Investig Drugs. 2011;20(8):1099–106.

    Article  CAS  PubMed  Google Scholar 

  • Politanski P, Rajkowska E, Brodecki M, Bednarek A, Zmyslony M. Combined effect of X-ray radiation and static magnetic fields on reactive oxygen species in rat lymphocytes in vitro. Bioelectromagnetics. 2013;34(4):333–6.

    Article  CAS  PubMed  Google Scholar 

  • Raylman RR, Clavo AC, Wahl RL. Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics. 1996;17(5):358–63.

    Article  CAS  PubMed  Google Scholar 

  • Ronchetto F, Barone D, Cintorino M, Berardelli M, Lissolo S, Orlassino R, Ossola P, Tofani S. Extremely low frequency-modulated static magnetic fields to treat cancer: a pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics. 2004;25(8):563–71.

    Article  PubMed  Google Scholar 

  • Rosen AD, Chastney EE. Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells. Bioelectromagnetics. 2009;30(2):114–9.

    Article  PubMed  Google Scholar 

  • Rulseh AM, Keller J, Klener J, Sroubek J, Dbaly V, Syrucek M, Tovarys F, Vymazal J. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol. 2012;10:220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabo J, Mirossay L, Horovcak L, Sarissky M, Mirossay A, Mojzis J. Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry. 2002;56(1–2):227–31.

    Article  CAS  PubMed  Google Scholar 

  • Salvatore JR, Harrington J, Kummet T. Phase I clinical study of a static magnetic field combined with anti-neoplastic chemotherapy in the treatment of human malignancy: initial safety and toxicity data. Bioelectromagnetics. 2003;24(7):524–7.

    Article  CAS  PubMed  Google Scholar 

  • Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, Jahromi AM. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron. 2010;41(2):101–4.

    Article  CAS  PubMed  Google Scholar 

  • Short WO, Goodwill L, Taylor CW, Job C, Arthur ME, Cress AE. Alteration of human tumor cell adhesion by high-strength static magnetic fields. Investig Radiol. 1992;27(10):836–40.

    Article  CAS  Google Scholar 

  • Strelczyk D, Eichhorn ME, Luedemann S, Brix G, Dellian M, Berghaus A, Strieth S. Static magnetic fields impair angiogenesis and growth of solid tumors in vivo. Cancer Biol Ther. 2009;8(18):1756–62.

    Article  PubMed  Google Scholar 

  • Strieth S, Strelczyk D, Eichhorn ME, Dellian M, Luedemann S, Griebel J, Bellemann M, Berghaus A, Brix G. Static magnetic fields induce blood flow decrease and platelet adherence in tumor microvessels. Cancer Biol Ther. 2008;7(6):814–9.

    Article  PubMed  Google Scholar 

  • Sullivan K, Balin AK, Allen RG. Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics. 2011;32(2):140–7.

    Article  PubMed  Google Scholar 

  • Sun W, Gan Y, Fu Y, Lu D, Chiang H. An incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 50-Hz magnetic field in cultured FL cells. Cell Physiol Biochem. 2008;22(5–6):507–14.

    Article  CAS  PubMed  Google Scholar 

  • Sun CT, Yu HM, Wang XW, Han JQ. A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: effects on survival and palliation of general symptoms. Oncol Lett. 2012a;4(5):1130–4.

    PubMed  PubMed Central  Google Scholar 

  • Sun RG, Chen WF, Qi H, Zhang K, Bu T, Liu Y, Wang SR. Biologic effects of SMF and paclitaxel on K562 human leukemia cells. Gen Physiol Biophys. 2012b;31(1):1–10.

    Article  PubMed  Google Scholar 

  • Sun W, Shen X, Lu D, Lu D, Chiang H. Superposition of an incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 1.8 GHz pulse-modulated radiofrequency radiation. Int J Radiat Biol. 2013;89(5):378–83.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Xie T, Florian S, Moerke N, Shamu C, Benes C, Mitchison TJ. Differential determinants of cancer cell insensitivity to antimitotic drugs discriminated by a one-step cell imaging assay. J Biomol Screen. 2013;18(9):1062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarov I, Panda A, Petkov D, Kolappaswamy K, Thompson K, Kavirayani A, Lipsky MM, Elson E, Davis CC, Martin SS, DeTolla LJ. Effect of magnetic fields on tumor growth and viability. Commun Med. 2011;61(4):339–45.

    CAS  Google Scholar 

  • Tenuzzo B, Chionna A, Panzarini E, Lanubile R, Tarantino P, Di Jeso B, Dwikat M, Dini L. Biological effects of 6 mT static magnetic fields: a comparative study in different cell types. Bioelectromagnetics. 2006;27(7):560–77.

    Article  CAS  PubMed  Google Scholar 

  • Teodori L, Giovanetti A, Albertini MC, Rocchi M, Perniconi B, Valente MG, Coletti D. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. J Radiat Res. 2014;55(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  • Tofani S. Electromagnetic energy as a bridge between atomic and cellular levels in the genetics approach to cancer treatment. Curr Top Med Chem. 2015;15(6):572–8.

    Article  CAS  PubMed  Google Scholar 

  • Tofani S, Barone D, Cintorino M, de Santi MM, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo K, Ronchetto F. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001;22(6):419–28.

    Article  CAS  PubMed  Google Scholar 

  • Tofani S, Cintorino M, Barone D, Berardelli M, De Santi MM, Ferrara A, Orlassino R, Ossola P, Rolfo K, Ronchetto F, Tripodi SA, Tosi P. Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields. Bioelectromagnetics. 2002;23(3):230–8.

    Article  PubMed  Google Scholar 

  • Tofani S, Barone D, Berardelli M, Berno E, Cintorino M, Foglia L, Ossola P, Ronchetto F, Toso E, Eandi M. Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res. 2003;48(1):83–90.

    CAS  PubMed  Google Scholar 

  • Vergallo C, Ahmadi M, Mobasheri H, Dini L. Impact of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during Cisplatin administration. PLoS One. 2014;9(11):e113530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang P, Xu H, Qian A, Hu L, Shang P. Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics. 2009;30(6):446–53.

    Article  PubMed  Google Scholar 

  • Wang T, Nie Y, Zhao S, Han Y, Du Y, Hou Y. Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells. Bioelectromagnetics. 2011;32(6):443–52.

    Article  PubMed  Google Scholar 

  • Zafari J, Javani Jouni F, Abdolmaleki P, Jalali A, Khodayar MJ. Investigation on the effect of static magnetic field up to 30 mT on viability percent, proliferation rate and IC50 of HeLa and fibroblast cells. Electromagn Biol Med. 2015;34(3):216–20.

    Article  PubMed  Google Scholar 

  • Zhang L, Yang XX, Liu JJ, Luo Y, Li ZY, Ji XM, Wang WC, Zhang X. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci Bull. 2015;60(24):2120–8.

    Article  CAS  Google Scholar 

  • Zhang L, Wang J, Wang H, Wang W, Li Z, Liu J, Yang X, Ji X, Luo Y, Hu C, Hou Y, He Q, Fang J, Wang J, Liu Q, Li G, Lu Q, Zhang X. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget. 2016;7:41527–39.

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ji X, Yang X, Zhang X. Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation. Oncotarget. 2017; doi:10.18632/oncotarget.14480.

    Google Scholar 

  • Zhao G, Chen S, Zhao Y, Zhu L. Effects of 13T static magnetic fields (SMF) in the cell cycle distribution and cell viability in immortalized hamster cells and human primary fibroblasts cells. Plasma Sci Technol. 2010;12(1):123–8.

    Article  CAS  Google Scholar 

  • Zhou W. Application and review of magnetic field treatment for cancer. J Magn Mater Devices. 2000;31(4):32–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, X., Yarema, K., Xu, A. (2017). Potential Applications of Static Magnetic Fields (SMFs) in Cancer Treatment. In: Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-10-3579-1_6

Download citation

Publish with us

Policies and ethics