Skip to main content

Impact of Static Magnetic Field (SMF) on Microorganisms, Plants and Animals

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields

Abstract

Static magnetic field (SMF) exists in nature widely and plays an essential role in the biological evolution. Due to the rapid development of superconducting technology, the intensity of SMF used for medical and academic research purposes has steadily increased in recent years. This chapter presents an overview on the biological effects induced by SMF with intensity ranging from mT to several Teslas (T). The effects of SMF on microorganisms are divided into six sections, including Cellular Growth and Viability, Morphological and Biochemical Modifications, Genotoxicity, Gene and Protein Expression, Magnetosome Formation Sensing Magnetic Field, and Application of SMF on Antibiotic Resistance, Fermentation and Wastewater Treatment. The effects of SMF on plants are divided into six sections, including Germination, Growth, Gravitropism, Photosynthesis, Redox Status, and Cryptochromes Sensing Magnetic Field. The effects of SMF on animals are divided into seven sections, including Caenorhabditis elegans, Insects, Helix pomatia, Aquatic Animals, Xenopus laevis, Mice and Rats, and Magnetic Sensing Protein in Animals. This chapter will be very helpful for better understanding the biological responses to SMF in different species and their underlying mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmelek H, Molnar A, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M. Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm. 2006;113:821–7.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 2007;225:615–24.

    Article  CAS  PubMed  Google Scholar 

  • Albertini MC, Accorsi A, Citterio B, Burattini S, Piacentini MP, Uguccioni F, Piatti E. Morphological and biochemical modifications induced by a static magnetic field on Fusarium culmorum. Biochimie. 2003;85:963–70.

    Article  CAS  PubMed  Google Scholar 

  • Amara S, Abdelmelek H, Ben Salem M, Abidi R, Sakly M. Effects of static magnetic field exposure on hematological and biochemical parameters in rats. Braz Arch Biol Technol. 2006a;49:889–95.

    Article  CAS  Google Scholar 

  • Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Ben RK. Effects of subchronic exposure to static magnetic field on testicular function in rats. Arch Med Res. 2006b;37:947–52.

    Article  CAS  PubMed  Google Scholar 

  • Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Ben RK. Zinc supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues. Environ Toxicol Pharmacol. 2007;23:193–7.

    Article  CAS  PubMed  Google Scholar 

  • Amara S, Douki T, Garel C, Favier A, Sakly M, Rhouma KB, Abdelmelek H. Effects of static magnetic field exposure on antioxidative enzymes activity and DNA in rat brain. Gen Physiol Biophys. 2009;28:260–5.

    Article  CAS  PubMed  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials. 2007;28:5381–9.

    Article  CAS  PubMed  Google Scholar 

  • Ammari M, Jeljeli M, Maaroufi K, Sakly M, Abdelmelek H, Roy V. Static magnetic field exposure affects behavior and learning in rats. Electromagn Biol Med. 2008;27:185–96.

    Article  PubMed  Google Scholar 

  • Anand A, Nagarajan S, Verma AP, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays l.). Indian J Biochem Biophys. 2012;49:63–70.

    CAS  PubMed  Google Scholar 

  • Antal M, László J. Exposure to inhomogeneous static magnetic field ceases mechanical allodynia in neuropathic pain in mice. Bioelectromagnetics. 2009;30:438–45.

    Article  PubMed  Google Scholar 

  • Atef MM, Elbaset MSA, Elkareem A, Aida S, Fadel MA. Effects of a static magnetic-field on hemoglobin structure and function. Int J Biol Macromol. 1995;17:105–11.

    Article  CAS  PubMed  Google Scholar 

  • Baby SM, Narayanaswamy GK, Anand A. Superoxide radical production and performance index of photosystem II in leaves from magnetoprimed soybean seeds. Plant Signal Behav. 2011;6:1635–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baghel L, Kataria S, Guruprasad KN. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37:455–70.

    Article  CAS  PubMed  Google Scholar 

  • Bajpai I, Saha N, Basu B. Moderate intensity static magnetic field has bactericidal effect on E. coli and S Epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2012;100:1206–17.

    Article  PubMed  CAS  Google Scholar 

  • Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: the story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci. 2016;25:338–51.

    Article  CAS  PubMed  Google Scholar 

  • Beischer DE, Knepton JC. Influence of strong magnetic fields on electrocardiogram of squirrel monkeys (Saimiri sciureus). Res Rep U S Nav Sch Aviat Med. 1964;35:1–24.

    Google Scholar 

  • Bellossi A. Effect of static magnetic-fields on survival of leukemia-prone AKR mice. Radiat Environ Biophys. 1986;25:75–80.

    Article  CAS  PubMed  Google Scholar 

  • Belyaev IY, Alipov ED. Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochim Biophys Acta 2001;1526(3):269–76.

    Google Scholar 

  • Benson DE, Grissom CB, Burns GL, Mohammad SF. Magnetic field enhancement of antibiotic activity in biofilm forming Pseudomonas aeruginosa. ASAIO J. 1994;40:M371–6.

    Article  CAS  PubMed  Google Scholar 

  • Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol. 2010;245:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak T, Dumlupinar R, Erdal S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 2010;31:120–9.

    PubMed  Google Scholar 

  • Cakmak T, Cakmak ZE, Dumlupinar R, Tekinay T. Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field. J Plant Physiol. 2012;169:1066–73.

    Article  CAS  PubMed  Google Scholar 

  • Carbonell MV, Martinez E, Amaya JM. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electromag Biol Med. 2009;19:21–128.

    Google Scholar 

  • Carbonell MV, Flórez M, Martínez E, Maqueda R, Amaya JM. Study of stationary magnetic fields on initial growth of pea (Pisum sativum l.) seeds. Seed Sci Technol. 2011;39:673–9.

    Article  Google Scholar 

  • Carlioz A, Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 1986;5:623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cason AM, Kwon B, Smith JC, Houpt TA. Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field. Physiol Behav. 2009;97:36–43.

    Article  CAS  PubMed  Google Scholar 

  • Chater S, Abdelmelek H, Sakly M, Ben RK. Effects of sub-acute exposure to magnetic field on synthesis of plasma corticosterone and Liver metallothionein levels in female rats. Pak J Med Sci. 2004;20:219–23.

    Google Scholar 

  • Chater S, Abdelmelek H, Douki T, Garrel C, Favier A, Sakly M, Ben RK. Exposure to static magnetic field of pregnant rats induces hepatic GSH elevation but not oxidative DNA damage in liver and kidney. Arch Med Res. 2006a;37:941–6.

    Article  CAS  PubMed  Google Scholar 

  • Chater S, Abdelmelek H, Pequignot JM, Sakly M, Ben RK. Effects of sub-acute exposure to static magnetic field on hematologic and biochemical parameters in pregnant rats. Electromagn Biol Med. 2006b;25:135–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Li R, He JM. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. 2011;20:760–9.

    Article  CAS  PubMed  Google Scholar 

  • da Motta MA, Muniz JBF, Schuler A, Da Motta M. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol Prog. 2004;20:393–6.

    Article  PubMed  CAS  Google Scholar 

  • De Luka SR, Ilic AZ, Jankovic S, Djordjevich DM, Cirkovic S, Milovanovich ID, Stefanovic S, Veskovic-Moracanin S, Ristic-Djurovic JL, Trbovich AM. Subchronic exposure to static magnetic field differently affects zinc and copper content in murine organs. Int J Radiat Biol. 2016;92:140–7.

    Article  PubMed  CAS  Google Scholar 

  • De Souza A., Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27:247–57.

    Article  Google Scholar 

  • Deghoyan A, Nikoghosyan A, Heqimyan A, Ayrapetyan S. Age-dependent effect of static magnetic field on brain tissue hydration. Electromagn Biol Med. 2014;33:58–67.

    Article  CAS  PubMed  Google Scholar 

  • Denegre JM, Valles JM, Lin K, Jordan WB, Mowry KL. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A. 1998;95:14729–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dengg M, van Meel JC. Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J Pharmacol Toxicol Methods. 2004;50:209–14.

    Article  CAS  PubMed  Google Scholar 

  • Djordjevich DM, De Luka SR, Milovanovich ID, Jankovic S, Stefanovic S, Veskovic-Moracanin S, Cirkovic S, Ilic AZ, Ristic-Djurovic JL, Trbovich AM. Hematological parameters’ changes in mice subchronically exposed to static magnetic fields of different orientations. Ecotoxicol Environ Saf. 2012;81:98–105.

    Article  CAS  PubMed  Google Scholar 

  • Edelman A, Teulon J, Puchalska IB. Influence of the magnetic fields on frog sciatic nerve. Biochem Biophys Res Commun. 1979;91:118–22.

    Article  CAS  PubMed  Google Scholar 

  • Egami S, Naruse Y, Watarai H. Effect of static magnetic fields on the budding of yeast cells. Bioelectromagnetics. 2010;31:622–9.

    Article  PubMed  Google Scholar 

  • Eguchi Y, Ogiue-Ikeda M, Ueno S. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci Lett. 2003;351:130–2.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi Y, Ueno S, Kaito C, Sekimizu K, Shiokawa K. Cleavage and survival of Xenopus embryos exposed to 8 T static magnetic fields in a rotating clinostat. Bioelectromagnetics. 2006;27:307–13.

    Article  PubMed  Google Scholar 

  • El May A, Snoussi S, Ben Miloud N, Maatouk I, Abdelmelek H, Ben Aissa R, Landoulsi A. Effects of static magnetic field on cell growth, viability, and differential gene expression in salmonella. Foodborne Pathog Dis. 2009;6:547–52.

    Article  PubMed  CAS  Google Scholar 

  • Elferchichi M, Mercier J, Coisy-Quivy M, Metz L, Lajoix AD, Gross R, Belguith H, Abdelmelek H, Sakly M, Lambert K. Effects of exposure to a 128-mT static magnetic field on glucose and lipid metabolism in serum and skeletal muscle of rats. Arch Med Res. 2010;41:309–14.

    Article  CAS  PubMed  Google Scholar 

  • Elferchichi M, Ammari M, Maaroufi K, Sakly M, Abdelmelek H. Effects of exposure to static magnetic field on motor skills and iron levels in plasma and brain of rats. Brain Inj. 2011;25:901–8.

    Article  PubMed  Google Scholar 

  • Elferchichi M, Mercier J, Ammari M, Belguith H, Abdelmelek H, Sakly M, Lambert K. Subacute static magnetic field exposure in rat induces a pseudoanemia status with increase in MCT4 and Glut4 proteins in glycolytic muscle. Environ Sci Pollut Res Int. 2016;23:1265–73.

    Article  CAS  PubMed  Google Scholar 

  • Evans EW, Dodson CA, Maeda K, Biskup T, Wedge CJ, Timmel CR. Magnetic field effects in flavoproteins and related systems. Interface Focus. 2013;3(5):20130037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Filipic J, Kraigher B, Tepus B, Kokol V, Mandic-Mulec I. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol. 2012;120:225–32.

    Article  CAS  PubMed  Google Scholar 

  • Fedele G, Green E, Rosato E, Kyriacou C. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun. 2014;14:4391–97.

    Google Scholar 

  • Flórez M, Carbonell MV, Martínez E. Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. Electromag Biol Med. 2004;23:167–76.

    Article  Google Scholar 

  • Flórez M, Carbonell MV, Martínez E. Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth. Environ Exp Bot. 2007;59:68–75.

    Article  Google Scholar 

  • Fukuda Y, Okamura Y, Takeyama H, Matsunaga T. Dynamic analysis of a genomic island in Magnetospirillum sp strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett. 2006;580:801–12.

    Article  CAS  PubMed  Google Scholar 

  • Gaffey CT, Tenforde TS. Alterations in the rat electrocardiogram induced by stationary magnetic fields. Bioelectromagnetics. 1981;2:357–70.

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Liu Y, Zhou J, Pan H. Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics. 2005;26:558–63.

    Article  PubMed  CAS  Google Scholar 

  • Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 2008;454(7207):1014–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghodbane S, Amara S, Arnaud J, Garrel C, Faure H, Favier A, Sakly M, Abdelmelek H. Effect of selenium pre-treatment on plasma antioxidant vitamins A (retinol) and E (alpha-tocopherol) in static magnetic field-exposed rats. Toxicol Ind Health. 2011a;27:949–55.

    Article  CAS  PubMed  Google Scholar 

  • Ghodbane S, Amara S, Garrel C, Arnaud J, Ducros V, Favier A, Sakly M, Abdelmelek H. Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Environ Toxicol Pharmacol. 2011b;31:100–6.

    Article  CAS  PubMed  Google Scholar 

  • Ghodbane S, Ammari M, Lahbib A, Sakly M, Abdelmelek H. Static magnetic field exposure-induced oxidative response and caspase-independent apoptosis in rat liver: effect of selenium and vitamin E supplementations. Environ Sci Pollut R. 2015;22:16060–6.

    Article  CAS  Google Scholar 

  • Giachello CN, Scrutton NS, Jones AR, Baines RA. Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome. J Neurosci. 2016;36:10742–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorgetto C, Silva ECM, Kitabatake TT, Bertolino G, de Araujo JE. Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field. Exp Brain Res. 2015;233:1455–62.

    Article  CAS  PubMed  Google Scholar 

  • Giorgi G, Guerra D, Pezzoli C, Cavicchi S, Bersani F. Genetic effects of static magnetic fields. Body size increase and lethal mutations induced in populations of Drosophila melanogaster after chronic exposure. Genet Sel Evol. 1992;24:393–413.

    Article  PubMed Central  Google Scholar 

  • Gould JL. Magnetoreception. Curr Biol. 2010;20:R431–5.

    Article  CAS  PubMed  Google Scholar 

  • Grosman Z, Kolar M, Tesarikova E. Effects of static magnetic field on some pathogenic microorganisms. Acta Univ Palacki Olomuc Fac Med. 1992;134:7–9.

    CAS  PubMed  Google Scholar 

  • Grunberg K, Wawer C, Tebo BM, Schuler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol. 2001;67:4573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyires K, Zadori ZS, Racz B, Laszlo J. Pharmacological analysis of inhomogeneous static magnetic field-induced antinociceptive action in the mouse. Bioelectromagnetics. 2008;29:456–62.

    Article  PubMed  Google Scholar 

  • Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore PJ, Okamoto H. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J R Soc Interface. 2009;6:1193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasenstein KH, Kuznetsov OA. The response of lazy-2 tomato seedlings to curvature-inducing magnetic gradients is modulated by light. Planta. 1999;208:59–65.

    Article  CAS  PubMed  Google Scholar 

  • Hasenstein KH, Mopper S. Analysis of magnetic gradients to study gravitropism. Am J Bot. 2012;100:249–55.

    Article  PubMed  CAS  Google Scholar 

  • Hasenstein KH, John S, Scherp P, Povinelli D, Mopper S. Analysis of magnetic gradients to study gravitropism. Am J Bot 2013;100(1):249–55.

    Google Scholar 

  • Hernadi L, Laszlo JF. Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia. Int J Radiat Biol. 2014;90:547–53.

    Article  CAS  PubMed  Google Scholar 

  • Herranz R, Manzano AI, van Loon JJ, Christianen PC, Medina FJ. Proteomic signature of arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology. 2013;13:217–24.

    Article  CAS  PubMed  Google Scholar 

  • High WB, Sikora J, Ugurbil K, Garwood M. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging. 2000;12:122–39.

    Article  CAS  PubMed  Google Scholar 

  • Ho MW, Stone TA, Jerman I, Bolton J, Bolton H, Goodwin BC, Saunders PT, Robertson F. Brief exposures to weak static magnetic field during early embryogenesis cause cuticular pattern abnormalities in Drosophila larvae. Phys Med Biol. 1992;37:1171–9.

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi S, Ishizaki Y, Okuno K, Ano T, Shoda M. Drastic high magnetic field effect on suppression of Escherichia coli death. Bioelectrochemistry. 2001;53:149–53.

    Article  CAS  PubMed  Google Scholar 

  • Hore PJ, Mouritsen H. The radical-pair mechanism of magnetoreception. Annu Rev Biophys. 2016;45:299–344.

    Article  CAS  PubMed  Google Scholar 

  • Houpt TA, Cassell JA, Riccardi C, DenBleyker MD, Hood A, Smith JC. Rats avoid high magnetic fields: dependence on an intact vestibular system. Physiol Behav. 2007;92:741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houpt TA, Carella L, Gonzalez D, Janowitz I, Mueller A, Mueller K, Neth B, Smith JC. Behavioral effects on rats of motion within a high static magnetic field. Physiol Behav. 2011;102:338–46.

    Article  CAS  PubMed  Google Scholar 

  • Houpt TA, Cassell JA, Carella L, Neth B, Smith JC. Head tilt in rats during exposure to a high magnetic field. Physiol Behav. 2012;105:388–93.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer C, Vogt MA, Richter SH, Zaun G, Zahedi Y, Maderwald S, Ladd ME, Winterhager E, Grummer R, Gass P. Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood. Reprod Toxicol. 2012;34:86–92.

    Article  CAS  PubMed  Google Scholar 

  • Hozayn M, Amal A, Abdel-Rahman H. Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). Afr J Agric Res. 2015;10:849–57.

    Article  CAS  Google Scholar 

  • Hu X, Qiu ZY. Effect of ultra-strong static magnetic field on bacteria: application of Fourier-transform infrared spectroscopy combined with cluster analysis and deconvolution. Bioelectromagnetics. 2009;30:500–7.

    Article  PubMed  Google Scholar 

  • Hung YC, Lee JH, Chen HM, Huang GS. Effects of static magnetic fields on the development and aging of Caenorhabditis elegans. J Exp Biol. 2010;213:2079–85.

    Article  PubMed  Google Scholar 

  • Ichioka S, Minegishi M, Iwasaka M, Shibata M, Nakatsuka T, Harii K, Kamiya A, Ueno S. High-intensity static magnetic fields modulate skin microcirculation and temperature in vivo. Bioelectromagnetics. 2000;21:183–8.

    Article  CAS  PubMed  Google Scholar 

  • Ichioka S, Minegishi M, Iwasaka M, Shibata M, Nakatsuka T, Ando J, Ueno S. Skin temperature changes induced by strong static magnetic field exposure. Bioelectromagnetics. 2003;24:380–6.

    Article  PubMed  Google Scholar 

  • Iimoto M, Watanabe K, Fujiwara K. Effects of magnetic flux density and direction of the magnetic field on growth and CO2 exchange rate of potato plantlets in vitro. Acta Hortic. 1996;440:606–10.

    Article  CAS  PubMed  Google Scholar 

  • Ikehata M, Koana T, Suzuki Y, Shimizu H, Nakagawa M. Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res. 1999;427:147–56.

    Article  CAS  PubMed  Google Scholar 

  • Ikehata M, Iwasaka M, Miyakoshi J, Ueno S, Koana T. Effects of intense magnetic fields on sedimentation pattern and gene expression profile in budding yeast. J Appl Phys. 2003;93:6724–6.

    Article  CAS  Google Scholar 

  • Iqbal M, Muhammad D, Zia-ul-Haq, Jamil M, Raza Ahmad M. Effect of pre-sowing magnetic field treatment to garden pea (Pisum sativum l.) seed on germination and seedling growth. Pak J Bot. 2012;44:1851–6.

    Google Scholar 

  • Iwasaka M, Ikehata M, Miyakoshi J, Ueno S. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry. 2004;65:59–68.

    Article  CAS  PubMed  Google Scholar 

  • Jan L, Dusan Fefer, Katarina Kosmelj, Alenka et al. 2015. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a, fluorescence in Lemna minor. Bioelectromagnetics 36:190–203.

    Google Scholar 

  • Ji W, Huang H, Deng A, Pan C. Effects of static magnetic fields on Escherichia coli. Micron. 2009;40:894–8.

    Article  PubMed  Google Scholar 

  • Ji Y, Wang Y, Sun J, Yan T, Li J, Zhao T, Yin X, Sun C. Enhancement of biological treatment of wastewater by magnetic field. Bioresour Technol. 2010;101:8535–40.

    Article  CAS  PubMed  Google Scholar 

  • Jing D, Shen GH, Cai J, Li FJ, Huang JH, Wang YQ, Xu QL, Tang C, Luo EP. Effects of 180 mT Static Magnetic Fields on Diabetic Wound Healing in Rats. Bioelectromagnetics. 2010;31:640–8.

    Article  PubMed  Google Scholar 

  • Jouni FJ, Abdolmaleki P, Ghanati F. Oxidative stress in broad bean (Vicia faba l.) induced by static magnetic field under natural radioactivity. Mutat Res. 2012;741:116–21.

    Article  CAS  PubMed  Google Scholar 

  • Jovanic BR, Sarvan MZ. Permanent magnetic field and plant leaf temperature. Electromag Biol Med. 2004;23:1–5.

    Article  Google Scholar 

  • Jung J, Sanji B, Godbole S, Sofer S. ChemInform abstract: biodegradation of phenol: a comparative study with and without applying magnetic fields. ChemInform. 1993;56:73–6.

    CAS  Google Scholar 

  • Kaletta T, Hengartner MO. Finding function in novel targets: C-elegans as a model organism. Nat Rev Drug Discov. 2006;5:387–98.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Kashiwagi K, Furuno N, Yamashita M, Kashiwagi A, Tanimoto Y. Effects of strong static magnetic fields on amphibian development and gene expression. Jpn J Appl Phys. 2006;1(45):6055–6.

    Article  CAS  Google Scholar 

  • Kimura T, Takahashi K, Suzuki Y, Konishi Y, Ota Y, Mori C, Ikenaga T, Takanami T, Saito R, Ichiishi E, Awaji S, Watanabe K, Higashitani A. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage in Caenorhabditis elegans. Bioelectromagnetics. 2008;29:605–14.

    Article  CAS  PubMed  Google Scholar 

  • Kiss B, Gyires K, Kellermayer M, Laszlo JF. Lateral gradients significantly enhance static magnetic field-induced inhibition of pain responses in mice—a double blind experimental study. Bioelectromagnetics. 2013;34:385–96.

    Article  PubMed  Google Scholar 

  • Kiss B, Laszlo JF, Szalai A, Porszasz R. Analysis of the effect of locally applied inhomogeneous static magnetic field-exposure on mouse ear edema – a double blind study. PLoS One. 2015;10:e0118089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohno M, Yamazaki M, Kimura II, Wada M. Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. Pathophysiology. 2000;7:143–8.

    Article  CAS  PubMed  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci U S A. 2004;101:3839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann G, Monig H. Studies on the influence of static magnetic-fields on prenatal development of mice. Radiologe. 1986;26:490–7.

    CAS  PubMed  Google Scholar 

  • Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura K, Hoshi K. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res. 2002;17:1814–21.

    Article  PubMed  Google Scholar 

  • Křiklavová L, Truhlář M, Škodová P, Lederer T, Jirků V. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor. Bioresour Technol. 2014;167:510–3.

    Article  PubMed  CAS  Google Scholar 

  • Kristofiková Z, Cermak M, Benesova O, Klaschka J, Zach P. Exposure of postnatal rats to a static magnetic field of 0.14 T influences functional laterality of the hippocampal high-affinity choline uptake system in adulthood; in vitro test with magnetic nanoparticles. Neurochem Res. 2005;30:253–62.

    Article  PubMed  CAS  Google Scholar 

  • Krzemieniewski M, Dębowski M, Janczukowicz W, Pesta J. Effect of sludge conditioning by chemical methods with magnetic field application. Pol J Environ Stud. 2003;12:595–605.

    CAS  Google Scholar 

  • Kuznetsov OA, Hasenstein KH. Intracellular magnetophoresis of amyloplasts and induction of root curvature. Plant. 1996;198:87–94.

    CAS  Google Scholar 

  • Lahbib A, Elferchichi M, Ghodbane S, Belguith H, Chater S, Sakly M, Abdelmelek H. Time-dependent effects of exposure to static magnetic field on glucose and lipid metabolism in rat. Gen Physiol Biophys. 2010;29:390–5.

    Article  CAS  PubMed  Google Scholar 

  • Lahbib A, Ghodbane S, Louchami K, Sener A, Sakly M, Abdelmelek H. Effects of vitamin D on insulin secretion and glucose transporter GLUT2 under static magnetic field in rat. Environ Sci Pollut Res. 2015a;22:18011–6.

    Article  CAS  Google Scholar 

  • Lahbib A, Ghodbane S, Maaroufi K, Louchami K, Sener A, Sakly M, Abdelmelek H. Vitamin D supplementation ameliorates hypoinsulinemia and hyperglycemia in static magnetic field-exposed rat. Arch Environ Occup Health. 2015b;70:142–6.

    Article  CAS  PubMed  Google Scholar 

  • László JF, Pórszász R. Exposure to static magnetic field delays induced preterm birth occurrence in mice. Am J Obstet Gynecol. 2011;205(362):e326–31.

    Google Scholar 

  • Laszlo JF, Szilvasi J, Fenyi A, Szalai A, Gyires K, Porszasz R. Daily exposure to inhomogeneous static magnetic field significantly reduces blood glucose level in diabetic mice. Int J Radiat Biol. 2011;87:36–45.

    Article  CAS  PubMed  Google Scholar 

  • Lebkowska M, Rutkowska-Narozniak A, Pajor E, Pochanke Z. Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol. 2011;102:8777–82.

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Chen HM, Yeh LK, Hong MY, Huang GS. Dosage-dependent induction of behavioral decline in Caenorhabditis elegans by long-term treatment of static magnetic fields. J Radiat Res. 2012;53:24–32.

    Article  CAS  PubMed  Google Scholar 

  • Levin M, Ernst SG. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetics. 1997;18:255–63.

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Todo T. The cryptochromes. Genome Biol. 2005;6:1–9.

    Article  CAS  Google Scholar 

  • Liu S, Yang F, Meng F, Chen H, Gong Z. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. J Biotechnol. 2008;138:96–102.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. J Plant Res. 2016;129(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  • Lockwood DR, Kwon B, Smith JC, Houpt TA. Behavioral effects of static high magnetic fields on unrestrained and restrained mice. Physiol Behav. 2003;78:635–40.

    Article  CAS  PubMed  Google Scholar 

  • Loghmannia J, Heidari B, Rozati SA, Kazemi S. The physiological responses of the Caspian kutum (Rutilus frisii kutum) fry to the static magnetic fields with different intensities during acute and subacute exposures. Ecotoxicol Environ Saf. 2015;111:215–9.

    Article  CAS  PubMed  Google Scholar 

  • Maaroufi K, Ammari M, Elferchichi M, Poucet B, Sakly M, Save E, Abdelmelek H. Effects of combined ferrous sulphate administration and exposure to static magnetic field on spatial learning and motor abilities in rats. Brain Inj. 2013;27:492–9.

    Article  PubMed  Google Scholar 

  • Mahajan TS, Pandey OP. Magnetic-time model at off-season germination. Int Agrophys. 2014;28:57–62.

    Article  Google Scholar 

  • Mahdi A, Gowland PA, Mansfield P, Coupland RE, Lloyd RG. The effects of static 3.0 T and 0.5 T magnetic fields and the echo-planar imaging experiment at 0.5 T on E. coli. Br J Radiol. 1994;67:983–7.

    Article  CAS  PubMed  Google Scholar 

  • Malko JA, Constantinidis I, Dillehay D, Fajman WA. Search for influence of 1.5 Tesla magnetic field on growth of yeast cells. Bioelectromagnetics. 1994;15:495–501.

    Article  CAS  PubMed  Google Scholar 

  • Marley R, Giachello CN, Scrutton NS, Baines RA, Jones AR. Cryptochrome-dependent magnetic field effect on seizure response in drosophila larvae. Sci Rep. 2014;4:5799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez E, Carbonell MV, Amaya JM. A static magnetic field of 125 mT stimulates the initial growth stages of barley (L.). Electro Magnetobiol. 2000;19:271–7.

    Article  Google Scholar 

  • Mateescu C, Burunţea N, Stancu N. Investigation of Aspergillus niger growth and activity in a static magnetic flux density field. Rom Biotechnol Lett. 2011;16:6364–8.

    Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp strain AMB-1. DNA Res. 2005;12:157–66.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Suzuki T, Tanaka M, Arakaki A. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 2007;25:182–8.

    Article  CAS  PubMed  Google Scholar 

  • Mevissen M, Buntenkotter S, Loscher W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology. 1994;50:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Michael AK, Fribourgh JL, Van Gelder RN, Partch CL. Animal Cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem Photobiol. 2017; 93: 128-140

    Google Scholar 

  • Mietchen D, Keupp H, Manz B, Volke F. Non-invasive diagnostics in fossils – magnetic resonance imaging of pathological belemnites. Biogeosciences. 2005;2:133–40.

    Article  Google Scholar 

  • Mihoub M, El MA, Aloui A, Chatti A, Landoulsi A. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol. 2012;157:259–66.

    Article  CAS  PubMed  Google Scholar 

  • Milovanovich ID, Cirkovic S, De Luka SR, Djordjevich DM, Ilic AZ, Popovic T, Arsic A, Obradovic DD, Opric D, Ristic-Djurovic JL, Trbovich AM. Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice. Environ Sci Pollut Res. 2016;23:1584–97.

    Article  CAS  Google Scholar 

  • Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol. 2005;87:213–23.

    Article  CAS  PubMed  Google Scholar 

  • Miryam E, Aida L, Samira M, Mohsen S, Hafedh A. Effects of acute exposure to static magnetic field on ionic composition of rat spinal cord. Gen Physiol Biophys. 2010;29(3):288–94.

    Article  PubMed  Google Scholar 

  • Moisescu C, Ardelean II, Benning LG. The effect and role of environmental conditions on magnetosome synthesis. Front Microbiol. 2014;5:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B. Retinal cryptochrome in a migratory passerine bird: A possible transducer for the avian magnetic compass. Naturwissenschaften. 2004;91(12):585–8.

    Article  PubMed  CAS  Google Scholar 

  • Moore RL. Biological effects of magnetic-fields – studies with microorganisms. Can J Microbiol. 1979;25:1145–51.

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Skalak T. Static magnetic fields alter arteriolar tone in vivo. Bioelectromagnetics. 2005;26:1–9.

    Article  PubMed  Google Scholar 

  • Morris CE, Skalak TC. Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J Appl Physiol. 2007;103:629–36.

    Article  PubMed  Google Scholar 

  • Morrow AC, Dunstan RH, King BV, Roberts TK. Metabolic effects of static magnetic fields on Streptococcus pyogenes. Bioelectromagnetics. 2007;28:439–45.

    Article  CAS  PubMed  Google Scholar 

  • Muniz JB, Marcelino M, da Motta M, Schuler A, da Motta MA. Influence of static magnetic fields on S-cerevisae biomass growth. Braz Arch Biol Technol. 2007;50:515–20.

    Article  CAS  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A. 2010;107(12):5593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami J, Torii Y, Masuda K. Fetal development of mice following intrauterine exposure to a static magnetic field of 6.3 T. Magn Reson Imaging. 1992;10:433–7.

    Article  CAS  PubMed  Google Scholar 

  • Nagy P, Fischl G. Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi. Bioelectromagnetics. 2004;25:316–8.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura C, Burgess JG, Sode K, Matsunaga T. An iron-regulated gene, magA, encoding an iron transport protein of magnetospirillum sp. Strain AMB-1. J Biol Chem. 1995;270:28392–6.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Okuno K, Ano T, Shoda M. Effect of high magnetic field on the growth of Bacillus subtilis measured in a newly developed superconducting magnet biosystem. Bioelectrochem Bioenerg. 1997;43:123–8.

    Article  CAS  Google Scholar 

  • Narra VR, Howell RW, Goddu SM, Rao DV. Effects of a 1.5-tesla static magnetic field on spermatogenesis and embryogenesis in mice. Investig Radiol. 1996;31:586–90.

    Article  CAS  Google Scholar 

  • Naz A, Jamil Y, ul Haq Z, Iqbal M, Ahmad MR, Ashraf MI, Ahmad R. Enhancement in the germination, growth and yield of okra (Abelmoschus esculentus) using pre-sowing magnetic treatment of seeds. Indian J Biochem Biophys. 2012;49:211–4.

    CAS  PubMed  Google Scholar 

  • Neurath PW. High gradient magnetic field inhibits embryonic development of frogs. Nature. 1968;219:1358–9.

    Article  CAS  PubMed  Google Scholar 

  • Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenbock G. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron. 2002;36:463–74.

    Article  CAS  PubMed  Google Scholar 

  • Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R. Magnetoreception: Activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface. 2013;10:20130638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikolic L, Bataveljic D, Andjus PR, Nedeljkovic M, Todorovic D, Janac B. Changes in the expression and current of the Na+/K+ pump in the snail nervous system after exposure to a static magnetic field. J Exp Biol. 2013;216:3531–41.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic L, Kartelija G, Nedeljkovic M. Effect of static magnetic fields on bioelectric properties of the Br and N(1) neurons of snail Helix pomatia. Comp Biochem Phys A. 2008;151:657–63.

    Article  CAS  Google Scholar 

  • Nikolic L, Todorovic N, Zakrzewska J, Stanic M, Rauš S, Kalauzi A, Janac B. Involvement of Na+/K(+)pump in fine modulation of bursting activity of the snail Br neuron by 10 mT static magnetic field. J Comp Physiol A. 2012;198:525–40.

    Article  CAS  Google Scholar 

  • Niu C, Liang W, Ren H, Geng J, Ding L, Xu K. Enhancement of activated sludge activity by 10-50 mT static magnetic field intensity at low temperature. Bioresour Technol. 2014;159:48–54.

    Article  CAS  PubMed  Google Scholar 

  • Nolte CM, Pittman DW, Kalevitch B, Henderson R, Smith JC. Magnetic field conditioned taste aversion in rats. Physiol Behav. 1998;63:683–8.

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ohkubo C. Effects of static magnetic fields on plasma levels of angiotensin II and aldosterone associated with arterial blood pressure in genetically hypertensive rats. Bioelectromagnetics. 2003;24:403–12.

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ohkubo C. Exposure to a moderate intensity static magnetic field enhances the hypotensive effect of a calcium channel blocker in spontaneously hypertensive rats. Bioelectromagnetics. 2005;26:611–23.

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ohkubo C. Elevated plasma nitric oxide metabolites in hypertension: synergistic vasodepressor effects of a static magnetic field and nicardipine in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2006;34:303–8.

    CAS  PubMed  Google Scholar 

  • Okano H, Ohkubo C. Effects of 12 mT static magnetic field on sympathetic agonist-induced hypertension in Wistar rats. Bioelectromagnetics. 2007;28:369–78.

    Article  PubMed  Google Scholar 

  • Okano H, Ino H, Osawa Y, Osuga T, Tatsuoka H. The effects of moderate-intensity gradient static magnetic fields on nerve conduction. Bioelectromagnetics. 2012;33:518–26.

    Article  PubMed  Google Scholar 

  • Okano H, Masuda H, Ohkubo C. Decreased plasma levels of nitric oxide metabolites, angiotensin II, and aidosterone in spontaneously hypertensive rats exposed to 5 mT static magnetic field. Bioelectromagnetics. 2005;26:161–72.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki R, Ootsuyama A, Uchida S, Norimura T. Effects of a 4.7 T static magnetic field on fetal development in ICR mice. J Radiat Res. 2001;42:273–83.

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Liu X. Apparent biological effect of strong magnetic field on mosquito egg hatching. Bioelectromagnetics. 2004;25:84–91.

    Article  PubMed  Google Scholar 

  • Pan HJ. The effect of a 7 T magnetic field on the egg hatching of Heliothis virescens. Magn Reson Imaging. 1996;14:673–7.

    Article  CAS  PubMed  Google Scholar 

  • Payez A, Ghanati F, Behmanesh M, Abdolmaleki P, Hajnorouzi A, Rajabbeigi E. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-khz electromagnetic field. Electromag Biol Med. 2013;32:417–29.

    Article  CAS  Google Scholar 

  • Peigneux A, Valverde-Tercedor C, Lopez-Moreno R, Perez-Gonzalez T, Fernandez-Vivas MA, Jimenez-Lopez C. Learning from magnetotactic bacteria: A review on the synthesis of biomimetic nanoparticles mediated by magnetosome-associated proteins. J Struct Biol. 2016;196:75–84.

    Article  CAS  PubMed  Google Scholar 

  • Peric-Mataruga V, Prolic Z, Nenadovic V, Mrdakovic M, Vlahovic M. Protocerebral mediodorsal A2' neurosecretory neurons in late pupae of yellow mealworm (Tenebrio molitor) after exposure to a static magnetic field. Electromagn Biol Med. 2006;25:127–33.

    Google Scholar 

  • Peric-Mataruga V, Prolic Z, Nenadovic V, Vlahovic M, Mrdakovic M. The effect of a static magnetic field on the morphometric characteristics of neurosecretory neurons and corpora allata in the pupae of yellow mealworm Tenebrio molitor (Tenebrionidae). Int J Radiat Biol. 2008;84:91–8.

    Article  CAS  PubMed  Google Scholar 

  • Poinapen D, Brown DC, Beeharry GK. Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields. J Plant Physiol. 2013;170:1251–8.

    Article  CAS  PubMed  Google Scholar 

  • Potenza L, Saltarelli R, Polidori E, Ceccaroli P, Amicucci A, Zeppa S, Zambonelli A, Stocchi V. Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on Tuber borchii mycelium. Can J Microbiol. 2012;58:1174–82.

    Article  CAS  PubMed  Google Scholar 

  • Potenza L, Ubaldi L, De SR, De BR, Cucchiarini L, Dachà M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res. 2004;561:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Prina-Mello A, Farrell E, Prendergast PJ, Campbell V, Coey JMD. Influence of strong static magnetic fields on primary cortical neurons. Bioelectromagnetics. 2006;27:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Prolic Z, Jovanovic Z. Influence of magnetic-field on the rate of development of honeybee preadult stage. Period Biol. 1986;88:187–8.

    Google Scholar 

  • Prolic ZM, Nenadovic V. The influence of a permanent magnetic-field on the process of adult emergence in tenebrio-molitor. J Insect Physiol. 1995;41:1113–8.

    Article  CAS  Google Scholar 

  • Rajini PS, Melstrom P, Williams PL. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides. J Toxicol Environ Health A. 2008;71:1043–50.

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, Hao J, Deng L, Yan X, Dong X, Zhao Z, Jiang T, Wang HW, Luo SJ, Xie C. A magnetic protein biocompass. Nat Mater. 2016;15(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  • Ramadan LA, Abd-Allah ARA, Aly HAA, Saad-El-Din AA. Testicular toxicity effects of magnetic field exposure and prophylactic role of coenzyme Q10 and L-carnitine in mice. Pharmacol Res. 2002;46:363–70.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez E, Monteagudo JL, Garcia-Gracia M, Delgado JM. Oviposition and development of Drosophila modified by magnetic fields. Bioelectromagnetics. 1983;4:315–26.

    Article  CAS  PubMed  Google Scholar 

  • Rankin CH, Lin CH. Finding a worm’s internal compass. Elife. 2015;4

    Google Scholar 

  • Rauš S, Todorovic D, Prolic Z. Viability of old house borer (Hylotrupes bajulus) larvae exposed to a constant magnetic field of 98 mT under laboratory conditions. Arch Biol Sci. 2009;61:129–34.

    Article  Google Scholar 

  • Rosmalen JGM, Leenen PJM, Pelegri C, Drexhage HA, Homo-Delarche F. Islet abnormalities in the pathogenesis of autoimmune diabetes. Trends Endocrinol Metab. 2002;13:209–14.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gómez M J, Prieto-Barcia M I, Ristori-Bogajo E and Martı́Nez-Morillo M. 2004. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64:151–155.

    Google Scholar 

  • Saito K, Suzuki H, Suzuki K. Teratogenic effects of static magnetic field on mouse fetuses. Reprod Toxicol. 2006;22:118–24.

    Article  CAS  PubMed  Google Scholar 

  • Sakhnini L, Dairi M. Effects of static magnetic fields on early embryonic development of the sea urchin Echinometra mathaei. IEEE Trans Magn. 2004;40:2979–81.

    Article  Google Scholar 

  • Santos LO, Alegre RM, Garcia-Diego C, Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45:1362–7.

    Article  CAS  Google Scholar 

  • Satow Y, Matsunami K, Kawashima T, Satake H, Huda K. A strong constant magnetic field affects muscle tension development in bullfrog neuromuscular preparations. Bioelectromagnetics. 2001;22:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Satow Y, Satake H, Matsunami K. Effects of long exposure to large static magnetic-field on the recovery process of bullfrog sciatic-nerve activity. Proc Jpn Acad B-Phys. 1990;66:151–5.

    Article  Google Scholar 

  • Saunders R. Static magnetic fields: animal studies. Prog Biophys Mol Biol. 2005;87:225–39.

    Article  PubMed  Google Scholar 

  • Savic T, Janac B, Todorovic D, Prolic Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med. 2011;30:108–14.

    Article  PubMed  Google Scholar 

  • Schreiber WG, Teichmann EM, Schiffer I, Jochem Hast MD, Akbari W, Georgi H, Graf R, Hehn M, Spieβ HW, Manfred Thelen MD. Lack of mutagenic and co-mutagenic effects of magnetic fields during magnetic resonance imaging. J Magn Reson Imaging. 2001;14:779–88.

    Article  CAS  PubMed  Google Scholar 

  • Sekino M, Tatsuoka H, Yamaguchi S, Eguchi Y, Ueno S. Effects of strong static magnetic fields on nerve excitation. IEEE Trans Magn. 2006;42:3584–6.

    Article  Google Scholar 

  • Shcherbakov D, Winklhofer M, Petersen N, Steidle J, Hilbig R, Blum M. Magnetosensation in zebrafish. Curr Biol. 2005;15:R161–2.

    Article  CAS  PubMed  Google Scholar 

  • She Z, Hu X, Zhao X, Ren Z, Ding G. FTIR investigation of the effects of ultra-strong static magnetic field on the secondary structures of protein in bacteria. Infrared Phys Technol. 2009;52:138–42.

    Article  CAS  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32:474–84.

    Article  CAS  PubMed  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mt on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33:428–37.

    Article  CAS  PubMed  Google Scholar 

  • Snoussi S, El May A, Coquet L, Chan P, Jouenne T, De E, Landoulsi A. Unraveling the effects of static magnetic field stress on cytosolic proteins of Salmonella by using a proteomic approach. Can J Microbiol. 2016;62:338–48.

    Article  CAS  PubMed  Google Scholar 

  • Snoussi S, May AE, Coquet L, Chan P, Jouenne T, Landoulsi A, Dé E. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci. 2012;10:1–9.

    Article  CAS  Google Scholar 

  • Snyder DJ, Jahng JW, Smith JC, Houpt TA. c-Fos induction in visceral and vestibular nuclei of the rat brain stem by a 9.4 T magnetic field. Neuroreport. 2000;11:2681–5.

    Article  CAS  PubMed  Google Scholar 

  • Solov’yov IA, Chandler DE, Schulten K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys J. 2007;92:2711–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Souza A, Sueiro L, García D, Porras E. Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Sci Technol. 2010;38:61–72.

    Google Scholar 

  • Sprando RL, Olejnik N, Cinar HN, Ferguson M. A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a complex object parametric analyzer and sorter, and axenic liquid media. Food Chem Toxicol. 2009;47:722–8.

    Article  CAS  PubMed  Google Scholar 

  • Staniland S, Ward B, Harrison A, van der Laan G, Telling N. Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism. Proc Natl Acad Sci U S A. 2007;104:19524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stansell MJ, Winters WD, Doe RH, Dart BK. Increased antibiotic resistance of E-coli exposed to static magnetic fields. Bioelectromagnetics. 2001;22:129–37.

    Article  CAS  PubMed  Google Scholar 

  • Subber A, Hail R, Jabail W, Hussein H. Effects of Magnetic Field on the Growth Development of Zea mays Seeds. J Nat Prod Plant Res. 2012;2:456–9.

    Google Scholar 

  • Tablado L, Soler C, Nunez M, Nunez J, Perez-Sanchez F. Development of mouse testis and epididymis following intrauterine exposure to a static magnetic field. Bioelectromagnetics. 2000;21:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Tagourti J, Elmay A, Aloui A, Chatti A, Ben Aissa R, Landoulsi A. Static magnetic field increases the sensitivity of Salmonella to gentamicin. Ann Microbiol. 2010;60:519–22.

    Article  CAS  Google Scholar 

  • Takashima Y, Miyakoshi J, Ikehata M, Iwasaka M, Ueno S, Koana T. Genotoxic effects of strong static magnetic fields in DNA-repair defective mutants of Drosophila melanogaster. J Radiat Res. 2004;45:393–7.

    Article  PubMed  Google Scholar 

  • Takebe A, Furutani T, Wada T, Koinuma M, Kubo Y, Okano K, Okano T. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation. Sci Rep UK. 2012; 2(10):727.

    Google Scholar 

  • Taniguchi N, Kanai S. Efficacy of static magnetic field for locomotor activity of experimental osteopenia. Evid Based Complement Alternat Med. 2007;4:99–105.

    Article  PubMed  Google Scholar 

  • Taniguchi N, Kanai S, Kawamoto M, Endo H, Higashino H. Study on application of static magnetic field for adjuvant arthritis rats. Evid Based Complement Alternat Med. 2004;1:187–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taskin M, Esim N, Genisel M, Ortucu S, Hasenekoglu I, Canli O, Erdal S. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields. Prep Biochem Biotechnol. 2013;43:177–88.

    Article  CAS  PubMed  Google Scholar 

  • Tenforde TS. Thermoregulation in rodents exposed to high-intensity stationary magnetic fields. Bioelectromagnetics. 1986;7:341–6.

    Article  CAS  PubMed  Google Scholar 

  • Todorovic D, Markovic T, Prolic Z, Mihajlovic S, Rauš S, Nikolic L, Janac B. The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera). Int J Radiat Biol. 2013;89:44–50.

    Article  CAS  PubMed  Google Scholar 

  • Todorovic D, Peric-Mataruga V, Mircic D, Ristic-Djurovic J, Prolic Z, Petkovic B, Savic T. Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field. Environ Sci Pollut Res Int. 2015;22:5305–14.

    Article  CAS  PubMed  Google Scholar 

  • Togawa T, Okai O, Oshima M. Observation of blood flow EMF in externally applied strong magnetic field by surface electrodes. Med Biol Eng. 1967;5:169–70.

    Article  CAS  PubMed  Google Scholar 

  • Tomska A, Wolny L. Enhancement of biological wastewater treatment by magnetic field exposure. Desalination. 2008;222:368–73.

    Article  CAS  Google Scholar 

  • Trock DH. Electromagnetic fields and magnets – investigational treatment for musculoskeletal disorders. Rheum Dis Clin N Am. 2000;26:51–62.

    Article  CAS  Google Scholar 

  • Tsuchiya K, Okuno K, Ano T, Tanaka K, Takahashi H, Shoda M. High magnetic field enhances stationary phase-specific transcription activity of Escherichia coli. Bioelectrochem Bioenerg. 1999;48:383–7.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji Y, Nakagawa M, Suzuki Y. Five-tesla static magnetic fields suppress food and water consumption and weight gain in mice. Ind Health. 1996;34:347–57.

    Article  CAS  PubMed  Google Scholar 

  • Tu R, Jin W, Xi T, Yang Q, Han S-F, Abomohra AE-F. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res. 2015;86:132–8.

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Harada K, Shiokawa K. The embryonic-development of frogs under strong DC magnetic-fields. IEEE Trans Magn. 1984;20:1663–5.

    Article  Google Scholar 

  • Ullrich S, Kube M, Schubbe S, Reinhardt R, Schuler D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol. 2005;187:7176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderstraeten J, Burda H, Verschaeve L, De BC. Could magnetic fields affect the circadian clock function of cryptochromes? Testing the basic premise of the cryptochrome hypothesis (elf magnetic fields). Health Phys. 2015;109:84–9.

    Article  CAS  PubMed  Google Scholar 

  • Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum l.). Bioelectromagnetics. 2008;29:571–8.

    Article  PubMed  Google Scholar 

  • Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167:149–56.

    Article  CAS  PubMed  Google Scholar 

  • Veliks V, Ceihnere E, Svikis L, Aivars J. Static magnetic field influence on rat brain function detected by heart rate monitoring. Bioelectromagnetics. 2004;25:211–5.

    Article  PubMed  Google Scholar 

  • Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife. 2015;4 doi:10.7554/eLife.07493.

  • Wang L, Du H, Guo XY, Wang XN, Wang MM, Wang YC, Wang M, Chen SP, Wu LJ, Xu A. Developmental abnormality induced by strong static magnetic field in Caenorhabditis elegans. Bioelectromagnetics. 2015;36:178–89.

    Article  PubMed  CAS  Google Scholar 

  • Wang XK, Ma QF, Jiang W, Lv J, Pan WD, Song T, Wu L-F. Effects of hypomagnetic field on magnetosome formation of Magnetospirillum magneticum AMB-1. Geomicrobiol J. 2008;25:296–303.

    Article  CAS  Google Scholar 

  • Wang X, Liang L, Song T, Wu L. Magnetosome Formation and Expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1 Exposed to Pulsed Magnetic Field. Curr Microbiol. 2009;59:221–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang X-H, Diao M-H, Yang Y, Shi Y-J, Gao M-M Wang S-G. Enhanced aerobic nitrifying granulation by static magnetic field. Bioresour Technol. 2012;110:105–110.

    Google Scholar 

  • Ward BK, Tan GXJ, Roberts DC, Della Santina CC, Zee DS, Carey JP. Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish. PLoS One. 2014;9:1–9.

    Google Scholar 

  • Weise SE, Kuznetsov OA, Hasenstein KH, Kiss JZ. Curvature in arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol. 2000;41:702–9.

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Herrick RC, Taber KH, Contant C, Plishker GA. Bio-effects of high magnetic fields: a study using a simple animal model. Magn Reson Imaging. 1992;10:689–94.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Lv Y, Chen C, Zhang Y, Wei S. Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in arabidopsis. Adv Space Res. 2014;53:1118–24.

    Article  CAS  Google Scholar 

  • Xu SZ, Okano H, Tomita N, Ikada Y. Recovery effects of a 180 mT static magnetic field on bone mineral density of osteoporotic lumbar vertebrae in ovariectomized rats. Evid Based Complement Alternat Med. 2011;2011:1–8.

    Google Scholar 

  • Xu SZ, Tomita N, Ohata R, Yan QC, Ikada Y. Static magnetic field effects on bone formation of rats with an ischemic bone model. Biomed Mater Eng. 2001;11:257–63.

    CAS  PubMed  Google Scholar 

  • Yan QC, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs. Med Eng Phys. 1998;20:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Yang PF, Hu LF, Wang Z, Ding C, Zhang W, Qian AR, Shang P. Inhibitory effects of moderate static magnetic field on leukemia. IEEE Trans Magn. 2009;45:2136–9.

    Article  CAS  Google Scholar 

  • Yang Y, Yan Y, Zou XL, Zhang CC, Zhang H, Xu Y, Wang XT, Janos P, Yang ZY, Gu HY. Static magnetic field modulates rhythmic activities of a cluster of large local interneurons in Drosophila antennal lobe. J Neurophysiol. 2011;106:2127–35.

    Article  PubMed  Google Scholar 

  • Yano A, Hidaka E, Fujiwara K, Iimoto M. Induction of primary root curvature in radish seedlings in a static magnetic field. Bioelectromagnetics. 2001;22:194–9.

    Article  CAS  PubMed  Google Scholar 

  • Yano A, Ohashi Y, Hirasaki T, Fujiwara K. Effects of a 60 hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings. Bioelectromagnetics. 2004;25:572–81.

    Article  CAS  PubMed  Google Scholar 

  • Ye SR, Yang JW, Chen CM. Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol. 2004;80:699–708.

    Article  CAS  PubMed  Google Scholar 

  • Yeh SR, Yang JW, Lee YT, Tsai LY. Static magnetic field expose enhances neurotransmission in crayfish nervous system. Int J Radiat Biol. 2008;84:561–7.

    Article  CAS  PubMed  Google Scholar 

  • Yoshie S, Ikehata M, Hirota N, Takemura T, Minowa T, Hanagata N, Hayakawa T. Evaluation of mutagenicity and co-mutagenicity of strong static magnetic fields up to 13 Tesla in Escherichia coli deficient in superoxide dismutase. J Magn Reson Imaging. 2012;35:731–6.

    Article  PubMed  Google Scholar 

  • Yoshii T, Ahmad M, Helfrich-Förster C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 2009;7(4):0813–9.

    Article  CAS  Google Scholar 

  • Yoshino T, Matsunaga T. Efficient and stable display of functional proteins on bacterial magnetic particles using mms13 as a novel anchor molecule. Appl Environ Microbiol. 2006;72:465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Liu H, Klejnot J, Lin C. The cryptochrome blue light receptors. Arabidopsis Book. 2001;8:e0135.

    Article  Google Scholar 

  • Yun HM, Ahn SJ, Park KR, Kim MJ, Kim JJ, Jin GZ, Kim HW, Kim EC. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 2016;85:88–98.

    Article  CAS  PubMed  Google Scholar 

  • Zahedi Y, Zaun G, Maderwald S, Orzada S, Putter C, Scherag A, Winterhager E, Ladd ME, Grummer R. Impact of repetitive exposure to strong static magnetic fields on pregnancy and embryonic development of mice. J Magn Reson Imaging. 2014;39:691–9.

    Article  PubMed  Google Scholar 

  • Zaun G, Zahedi Y, Maderwald S, Orzada S, Putter C, Scherag A, Winterhager E, Ladd ME, Grummer R. Repetitive exposure of mice to strong static magnetic fields in utero does not impair fertility in adulthood but may affect placental weight of offspring. J Magn Reson Imaging. 2014;39:683–90.

    Article  PubMed  Google Scholar 

  • Zhang QM, Tokiwa M, Doi T, Nakahara T, Chang PW, Nakamura N, Hori M, Miyakoshi J, Yonei S. Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol. 2003;79:281–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, X., Yarema, K., Xu, A. (2017). Impact of Static Magnetic Field (SMF) on Microorganisms, Plants and Animals. In: Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-10-3579-1_5

Download citation

Publish with us

Policies and ethics