Skip to main content

Metagenomic Approaches for Novel Active Metabolites

  • Chapter
  • First Online:
Bioresources and Bioprocess in Biotechnology

Abstract

Microorganisms are a proven source of bioactive metabolites with significant functionality and applications. Earlier studies on bioactive metabolite discovery relied solely on cultivable microbial species. However, advances in genomic techniques revealed that culturable microorganisms represent only a tiny fraction of the total microbial diversity, prompting the development of a new field for accessing the unculturable microbial community, termed metagenomics. Metagenomics overcomes the problems of cultivation techniques by exploring the genome of microorganisms as a whole (metagenome), rather than culturing it. Metagenomic-based functional analysis has identified a number of novel biomolecules at a pace which was not achievable using traditional culture-based screening techniques. The approach has also provided valuable insights into previously overlooked biochemistry of culturable organisms. Recent breakthroughs in next-generation sequencing technologies and bioinformatics have made large-scale sequencing and analyzing of metagenome feasible and cost-effective, which further accelerated research in this field. This chapter discusses different aspects of metagenomics and their application for identifying novel active metabolites, highlighting diverse array of strategies and recent discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R et al (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72:102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angelov A, Mientus M, Liebl S, Liebl W (2009) A two-host fosmid system for functional screening of (meta) genomic libraries from extreme thermophiles. Syst Appl Microbiol 32:177–185

    Article  CAS  PubMed  Google Scholar 

  • Aravindraja C, Viszwapriya D, Pandian SK (2013) Ultra deep 16S rRNA sequencing analysis of geographically similar but diverse unexplored marine samples reveal varied bacterial community composition. PLoS One 8(10):e76724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkiyaraj D, Pandian SK (2010) In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling 26:711–717

    Article  CAS  PubMed  Google Scholar 

  • Banik JJ, Brady SF (2008) Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA mega library. Proc Natl Acad Sci 105:17273–17277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci 91:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone R, De Santi C, Esposito FP, Tedesco P, Galati F, Visone M et al (2014) Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery. Front Mar Sci 1:1–6

    Article  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Chang FY, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci 110:2478–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1:e24

    Article  PubMed Central  CAS  Google Scholar 

  • Craig JW, Chang FY, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culligan EP, Marchesi JR, Hill C, Sleator RD (2014) Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome. Front Microbiol 5:189–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  PubMed  Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P et al (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, Mc Manus PS et al (2010) Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl Environ Microbiol 76:4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donia MS, Ruffner DE, Cao S, Schmidt EW (2011) Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem 12:1230–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eden PA, Schmidt TM, Blakemore RP, Pace NR (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325

    Article  CAS  PubMed  Google Scholar 

  • Ekkers DM, Cretoiu MS, Kielak AM, van Elsas JD (2012) The great screen anomaly – a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020

    Article  CAS  PubMed  Google Scholar 

  • Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33

    Article  CAS  PubMed  Google Scholar 

  • Felczykowska A, Bloch SK, Nejman-Falenczyk B, Baranska S (2012) Metagenomic approach in the investigation of new bioactive compounds in the marine environment. Acta Biochim Pol 59:501–505

    CAS  PubMed  Google Scholar 

  • Feng Z, Chakraborty D, Dewell SB, Reddy BVB, Brady SF (2012) Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J Am Chem Soc 134:2981–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KM, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16:109–123

    Article  CAS  PubMed  Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for recovery of novel amidases. Environ Microbiol 6:948–958

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4310–4306

    Article  CAS  Google Scholar 

  • Gloux K, Berteau O, Oumami HE, Beguet F, Leclerc M, Dore JA (2011) Metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci 108:4539–4546

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar S, Poornima B, Pandian SK (2014) Inhibitory efficacy of cyclo (l-leucyl-l-prolyl) from mangrove rhizosphere bacterium–Bacillus amyloliquefaciens (MMS-50) toward carcinogenic properties of Streptococcus mutans. Res Microbiol 165:278–289

    Article  CAS  PubMed  Google Scholar 

  • Grimes DJ, Atwell RW, Brayton PR, Palmer LM, Rollins DM, Roszak DB et al (1986) The fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol Sci 3:324–329

    CAS  PubMed  Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT et al (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6:e18565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan C, Ju J, Borlee BR, Williamson LL, Shen B, Raffa KF et al (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73:3669–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • He R, Wakimoto T, Takeshige Y, Egami Y, Kenmoku H, Ito T et al (2012) Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. Mol Biosyst 8:2334–2338

    Article  CAS  PubMed  Google Scholar 

  • Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10:395–402

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Waggoner LE, Liu H, Sudek S, Allen S, Anderson C et al (2004) bryA: an unusual modular polyketides synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem Biol 11:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson BP, Grice EA (2015) Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care 4:50–58

    Article  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RA, Jones SJ (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Mitra S, Weber N, Ruscheweyh N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Harper JP, Willoughby D, Roden EE, Churchill PF (1997) A simple, efficient method for the separation of humic substances and DNA from environmental samples. Appl Environ Microbiol 63:4993–4995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation exchange resin. Appl Environ Microbiol 58:2458–2462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2007) Metagenomic approach to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  CAS  PubMed  Google Scholar 

  • Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935

    Article  CAS  PubMed  Google Scholar 

  • Lefevre F, Robe P, Jarrin C, Ginolhac A, Zago C, Auriol D et al (2008) Drugs from hidden bugs: their discovery via untapped resources. Res Microbiol 159:153–161

    Article  CAS  PubMed  Google Scholar 

  • Leff LG, Dana JR, McArthur JV, Shimkets LJ (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61:1141–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leveau JH, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65:238–250

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qin L (2005) Metagenomics based drug discovery and marine microbial diversity. Trends Biotechnol 23:539–543

    Article  CAS  PubMed  Google Scholar 

  • Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR et al (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142

    Article  CAS  Google Scholar 

  • Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6:1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  CAS  PubMed  Google Scholar 

  • Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  • Martin M, Biver S, Steels S, Barbeyron T, Jam M, Portetelle D et al (2014) Functional screening of a metagenomic library of seaweed-associated microbiota: identification and characterization of a halotolerant, cold-active marine endo-ß-1, 4-endoglucanase. Appl Environ Microbiol 80:4958–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, Mac Neil IA et al (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meyer QC, Burton SG, Cowan DA (2007) Subtractive hybridization magnetic bead capture: a new technique for the recovery of full length ORFs from the metagenome. J Biotechnol 2:36–40

    Article  CAS  Google Scholar 

  • Mohn WW, Garmendia J, Galvao TC, De Lorenzo V (2006) Surveying biotransformations with a la carte genetic traps: translating dehydrochlorination of lindane (gammahexachlorocyclohexane) into lacZ-based phenotypes. Environ Microbiol 8:546–555

    Article  CAS  PubMed  Google Scholar 

  • More MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60:1572–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JL, Darling AE, Eisen JA (2009) Metagenomic sequencing of an in vitro-simulated microbial community. PLoS One 5:e10209

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindstrom K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165

    Article  Google Scholar 

  • Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 161:293–304

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen JG, Robins KJ, Parachin NS, Ackerley DF (2012) A functional screen for recovery of 4′-phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environ Microbiol 14:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology. Springer, Boston, pp 1–55

    Chapter  Google Scholar 

  • Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Pathak GP, Ehrenreich A, Losi A, Streit WR, Gartner W (2009) Novel blue light-sensitive proteins from a metagenomic approach. Environ Microbiol 11:2388–2399

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2002) A polyketides synthase peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci 99:14002–14007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N et al (2004) Antitumor polyketides biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci 101:16222–16227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purohit MK, Singh SP (2008) Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol 49:338–344

    Article  CAS  Google Scholar 

  • Radajewski S, Murrell JC (2002) Stable isotope probing for detection of methanotrophs after enrichment with 13CH4. Methods Mol Biol 179:149–157

    CAS  PubMed  Google Scholar 

  • Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 10:560–570

    Article  CAS  PubMed  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  CAS  PubMed  Google Scholar 

  • Rochelle PA, Fry JC, Parkes RJ, Weightman AJ (1992) DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 100:59–65

    Article  CAS  PubMed  Google Scholar 

  • Rondon M, August P, Bettermann A, Brady S, Grossman T, Liles M et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabree ZL, Rondon MR, Handelsman J (2009) Metagenomics. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Amsterdam, pp 622–632

    Chapter  Google Scholar 

  • Salomon CE, Magarvey NA, Sherman DH (2004) Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep 21:105–121

    Article  CAS  PubMed  Google Scholar 

  • Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  • Schmeider R, Edwards E (2011) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 6:e17288

    Article  CAS  Google Scholar 

  • Sharma P, Capalash N, Kaur J (2007) An improved method for single step purification of metagenomic DNA. Mol Biotechnol 36:61–63

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Du L, Sanchez C, Edwards DJ, Chen M, Murrell JM (2001) The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide – polyketide natural product biosynthesis. J Ind Microbiol Biotechnol 27:378–385

    Article  CAS  PubMed  Google Scholar 

  • Siddhapura PK, Vanparia S, Purohit MK, Singh SP (2010) Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol 47:375–379

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Herath J, Rockstroh S, Daniel R (2009) Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol 75:2964–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonet P, Capellano A, Navarro E, Bardin R, Moiroud A (1984) An improved method for lysis of Frankia with achromopeptidase allows detection of new plasmids. Can J Microbiol 30:1292–1295

    Article  CAS  Google Scholar 

  • Singh RP, Kumari P, Reddy CRK (2015) Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 99:1571–1586

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Steele HL, Jaeger KE, Daniel R, Streit WR (2008) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16:25–37

    Article  PubMed  CAS  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Thenmozhi R, Nithyanand P, Rathna J, Pandian SK (2009) Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2:1–12

    Article  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Gordon JL (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713

    Article  CAS  PubMed  Google Scholar 

  • Tyler-Smith C, Yang H, Landweber LF, Dunham I, Knoppers BM, Donnelly P et al (2015) Where next for genetics and genomics? PLoS Biol 13:e1002216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl Environ Microbiol 76:7029–7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Watanabe K (2007) The SIGEX scheme: high throughput screening of environmental metagenomes for the isolation of novel catabolic genes. Biotechnol Genet Eng Rev 24:107–116

    Article  CAS  PubMed  Google Scholar 

  • Urbach E, Vergin KL, Giovannoni SJ (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl Environ Microbiol 65:1207–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Satyanarayana T (2011) An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Appl Biochem Biotechnol 165:454–464

    Article  CAS  PubMed  Google Scholar 

  • Viszwapriya D, Aravindraja C, Pandian SK (2015) Comparative assessment of bacterial diversity associated with co-occurring eukaryotic hosts of Palk Bay origin. Indian J Exp Biol 53:417–423

    PubMed  Google Scholar 

  • Wang GYS, Graziani E, Waters B, Pan W, Li X, McDermott J et al (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2:2401–2404

    Article  CAS  PubMed  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan CH, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71:6335–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories 4:8–12

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Viszwapriya, D., Karutha Pandian, S. (2017). Metagenomic Approaches for Novel Active Metabolites. In: Abdulhameed, S., Pradeep, N., Sugathan, S. (eds) Bioresources and Bioprocess in Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3573-9_12

Download citation

Publish with us

Policies and ethics