Skip to main content

Analyzing the Effect of Advanced Agriculture Development Policy

  • Chapter
  • First Online:
  • 414 Accesses

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 12))

Abstract

This chapter broadens the scope of current theoretical studies, divides rural agriculture into two sectors—advanced and traditional—and takes into consideration the land factor and the urban informal sector. Under the assumption that wages in the advanced agricultural sector are higher than in the traditional agricultural sector, this chapter analyzes the effect of policies to promote advanced agricultural development with the comparative static method. The main conclusions of this chapter are wage subsidization of the advanced agricultural sector, in addition to having the same economic impact as interest subsidies on the advanced agricultural sector, could also increase the land employment in the advanced agricultural sector, and reduce that in the traditional agricultural sector. Therefore, the effect of wage subsidizing policies is stronger than that of interest subsidies, while land rent subsidies for the advanced agricultural sector have the same economic effect as wage subsidies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Please refer to Zheng et al. (2009), analysis on the target and model of modern high-efficiency agricultural development.

References

  • Beladi, H., Chakrabarti, A., & Marjit, S. (2010). Skilled-unskilled wage inequality and urban unemployment. Economic Inquiry, 48(4), 997–1007.

    Google Scholar 

  • Beladi, H., Chakrabarti, A., & Marjit, S. (2010). Skilled-unskilled wage inequality and urban unemployment. Economic Inquiry, 48(4), 997–1007.

    Google Scholar 

  • Brecher, R. A., & Alejandro, C. F. (1977). Tariffs, foreign capital and immiserating growth. Journal of International Economics, 7(4), 317–322.

    Article  Google Scholar 

  • Chandra, V., & Khan, M. (1993). Foreign investment in the presence of an informal sector. Economica, 60(237), 79–103.

    Article  Google Scholar 

  • Chao, C.-C., & Yu, E. S. H. (1992). Capital markets, urban unemployment and land. Journal of Development Economics, 38, 407–413.

    Article  Google Scholar 

  • Chaudhuri, S. (2006). Labor market reform, welfare and unemployment in a small open economy. Keio Economics Studies, 43(2), 1–17.

    Google Scholar 

  • Chaudhuri, S. (2007). Foreign capital, welfare and urban unemployment in the presence of agricultural dualism. Japan and the World Economy, 19, 149–165.

    Article  Google Scholar 

  • Corden, W. M., & Findlay, R. (1975). Urban unemployment, intersectional capital mobility and development policy. Economica, 42(142), 59–78.

    Article  Google Scholar 

  • Din, M. (1996). International capital mobility and development policy in a dual economy. Review of International Economics, 6, 185–201.

    Article  Google Scholar 

  • Gupta, M. (1993). Rural-urban migration, informal sector and development policies: A theoretical analysis. Journal of Development Economics, 41, 137–151.

    Article  Google Scholar 

  • Gupta, M. (1997a). Informal sector and informal capital market in a small open less-developed economy. Journal of Development Economics, 52(2), 409–428.

    Article  Google Scholar 

  • Gupta, M. (1997b). Foreign capital and the informal sector: Comments on Chandra and Khan. Economica, 64(254), 353–363.

    Article  Google Scholar 

  • Grinols, E. L. (1991). Unemployment and foreign capital: The relative opportunity costs of domestic labor and welfare. Economica, 58(229), 107–121.

    Article  Google Scholar 

  • Harris, J., & Todaro, M. (1970). Migration, unemployment and development: A two-sector analysis. American Economic Review, 60, 126–142.

    Google Scholar 

  • Khan, M. A., & Naqvi, S. N. H. (1983). Capital markets and urban unemployment. Journal of International Economics, 15, 367–385.

    Article  Google Scholar 

  • Li, X. C., & Shen, Q. (2012). A study on the urban private capital in the modern agriculture sector and the transfer of labor. Journal of Economic Policy Reform, 15(2), 135–152.

    Article  Google Scholar 

  • McCool, T. (1982). Wage subsidies and distortionary taxes in a mobile capital Harris-Todaro model. Economica, 49(193), 69–79.

    Article  Google Scholar 

  • Yabuuchi, S. (1998). Urban unemployment, factor accumulation, and welfare. Review of Development Economics, 2(1), 31–40.

    Article  Google Scholar 

  • Yabuuchi, S., & Belaid, H. (2001). Urban unemployment, informal sector and development policies. Journal of Economics, 74(3), 301–314.

    Article  Google Scholar 

  • Zheng, J. C., Liu, H. Z., Zhou, J. T., Zhen, R. H., & Li, N. (2009). Study on the goals and models of advanced agricultural development in Jiangsu Province. Jiangsu Agricultural Academic Journal, 25(1), 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix A

The dynamic adjustment procedure:

$$ \overset{\bullet }{L_1}={d}_1\left({p}_1{F}_L^1-\overline{w_1}\right) $$
(11.A1)
$$ \overset{\bullet }{L_2}={d}_2\left({p}_2{F}_L^2-{w}_2\right) $$
(11.A2)
$$ \overset{\bullet }{L_3}={d}_3\left({p}_3{gF}_L^2-{w}_3\right) $$
(11.A3)
$$ \overset{\bullet }{L_4}={d}_4\left({F}_L^4-{w}_4\right) $$
(11.A4)
$$ \overset{\bullet }{K_1}={d}_5\left({p}_1{F}_K^1- r\right) $$
(11.A5)
$$ \overset{\bullet }{K_3}={d}_6\left({p}_3{g}^{\prime }{F}^3- r\right) $$
(11.A6)
$$ \overset{\bullet }{T_3}={d}_7\left({p}_3{gF}_T^3-\tau \right) $$
(11.A7)
$$ \overset{\bullet }{T_4}={d}_8\left({F}_T^4-\tau \right) $$
(11.A8)
$$ \overset{\bullet }{w_2}={d}_9\left({L}_1+{L}_2+{L}_3+{L}_4- L\right) $$
(11.A9)
$$ \overset{\bullet }{w_3}={d}_{10}\left({L}_3- f\left({K}_3\right)\right) $$
(11.A10)
$$ \overset{\bullet }{w_4}={d}_{11}\left({L}_1\overline{w_1}+{L}_2{w}_2+{L}_3{w}_3-\left( L-{L}_4\right){w}_4\right) $$
(11.A11)
$$ \overset{\bullet }{r}={d}_{12}\left({K}_1+{K}_3- K\right) $$
(11.A12)
$$ \overset{\bullet }{\tau}={d}_{13}\left({T}_3+{T}_4- T\right) $$
(11.A13)

The total differential of (11.A1), (11.A2), (11.A3), (11.A4), (11.A5), (11.A6), (11.A7), (11.A8), (11.A9), (11.A10), (11.A11), (11.A12), and (11.A13) can be written as the following Jacobian matrix:

$$ \begin{array}{ll}\hfill & \left|J\right|\\ {}& =\left[\begin{array}{lllllllllllll}{d}_1{p}_1{F}_{LL}^1\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_1{p}_1{F}_{LK}^1\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & {d}_2{p}_2{F}_{LL}^2\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & -{d}_2\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & {d}_3{p}_3{gF}_{LL}^3\hfill & 0\hfill & 0\hfill & {d}_3{p}_3{g^{\prime }F}_L^3\hfill & {d}_3{p}_3{gF}_{LT}^3\hfill & 0\hfill & 0\hfill & -{d}_3\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & 0\hfill & {d}_4{F}_{LL}^4\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_4{F}_{LT}^4\hfill & 0\hfill & 0\hfill & -{d}_4\hfill & 0\hfill & 0\hfill \\ {}{d}_5{p}_1{F}_{KL}^1\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_5{p}_1{F}_{KK}^1\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & -{d}_5\hfill & 0\hfill \\ {}0\hfill & 0\hfill & {d}_6{p}_3{g^{\prime }F}_L^3\hfill & 0\hfill & 0\hfill & {d}_6{p}_3{g^{{\prime\prime} }F}^3\hfill & {d}_6{p}_3{g^{\prime }F}_T^3\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & -{d}_6\hfill & 0\hfill \\ {}0\hfill & 0\hfill & {d}_7{p}_3{gF}_{TL}^3\hfill & 0\hfill & 0\hfill & {d}_7{p}_3{g^{\prime }F}_T^3\hfill & {d}_7{p}_3{gF}_{TT}^3\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & -{d}_7\hfill \\ {}0\hfill & 0\hfill & 0\hfill & {d}_8{F}_{TL}^4\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_8{F}_{TT}^4\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & -{d}_8\hfill \\ {}{d}_9\hfill & {d}_9\hfill & {d}_9\hfill & {d}_9\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & {d}_{10}\hfill & 0\hfill & 0\hfill & -{d}_{10}{f}^{\prime}\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}{d}_{11}\overline{w_1}\hfill & {d}_{11}{w}_2\hfill & {d}_{11}{w}_3\hfill & {d}_{11}{w}_4\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_{11}{L}_2\hfill & {d}_{11}{L}_3\hfill & -{d}_{11}\left(L-{L}_4\right)\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_{12}\hfill & {d}_{12}\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & {d}_{13}\hfill & {d}_{13}\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill & 0\hfill \end{array}\right]\hfill \\ {}& =-{d}_1{d}_2{d}_3{d}_4{d}_5{d}_6{d}_7{d}_8{d}_9{d}_{10}{d}_{11}{d}_{12}{d}_{13}{p}_1{\Delta}_1\hfill \end{array} $$

Under the condition of a stable system, there must be |J| < 0, and thus Δ1 > 0.

1.2 Appendix B

If the government subsidizes loan interest, wage and land rent for the advanced agricultural sector with the rates of s 1, s 2, and s 3, respectively, Eq. (11.14) becomes:

$$ {p}_2{g}^{\prime}\left({K}_2\right){F}^2= r\left(1-{s}_1\right) $$
(11.14′)

Equation (11.11) becomes:

$$ {p}_3{gF}_L^3={w}_3\left(1-{s}_2\right) $$
(11.11′)

Equation (11.15) becomes:

$$ {p}_3{gF}_T^3=\tau \left(1-{s}_3\right) $$
(11.15′)

Then, the total differential of (11.5), (11.6), (11.7), (11.8), (11.9), (11.10), (11.11′), (11.12), (11.13), (11.14′), (11.15′), (11.16), and (11.17′) can be organized as follows:

$$ \begin{array}{ll}\hfill & \left[\begin{array}{lllllll}{F}_{LL}^1\hfill & 0\hfill & 0\hfill & -{F}_{LK}^1\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & 0\hfill & {p}_3\left({g^{\prime }F}_L^3+{gF}_{LL}^3{f}^{\prime}\right)\hfill & {p}_3{gF}_{LT}^3\hfill & -1\hfill & 0\hfill \\ {}0\hfill & 0\hfill & {F}_{LL}^4\hfill & 0\hfill & -{F}_{LT}^4\hfill & 0\hfill & -1\hfill \\ {}{p}_1{F}_{KL}^1\hfill & 0\hfill & 0\hfill & -\left[{p}_1{F}_{KK}^1+{p}_3\left({g^{{\prime\prime} }F}^3+{g^{\prime }F}_L^3{f}^{\prime}\right)\right]\hfill & -{p}_3{g^{\prime }F}_T^3\hfill & 0\hfill & 0\hfill \\ {}0\hfill & 0\hfill & -{F}_{TL}^4\hfill & {p}_3\left({g^{\prime }F}_T^3+{gF}_{TL}^3{f}^{\prime}\right)\hfill & {p}_3{gF}_{TT}^3+{F}_{TT}^4\hfill & 0\hfill & 0\hfill \\ {}1\hfill & 1\hfill & 1\hfill & {f}^{\prime}\hfill & 0\hfill & 0\hfill & 0\hfill \\ {}\overline{w_1}\hfill & {w}_2+{L}_2{p}_2{F}_{LL}^2\hfill & {w}_4\hfill & {w}_3{f}^{\prime}\hfill & 0\hfill & {L}_3\hfill & -\left(L-{L}_4\right)\hfill \end{array}\right]\\ {}& \times \left[\begin{array}{l}{dL}_1\hfill \\ {}{dL}_2\hfill \\ {}{dL}_4\hfill \\ {}{dK}_3\hfill \\ {}{dT}_3\hfill \\ {}{dw}_3\hfill \\ {}{dw}_4\hfill \end{array}\right]=\left[\begin{array}{l}0\hfill \\ {}-{w}_3{ds}_2\hfill \\ {}0\hfill \\ {}{rds}_1\hfill \\ {}-\tau {ds}_3\hfill \\ {}0\hfill \\ {}0\hfill \end{array}\right]\hfill \end{array} $$
(11.B1)

By dynamic adjustment, we get that the value of the coefficient matrix (11.B1) Δ1 > 0.

Let \( a={F}_{LL}^1 \) ,\( b={p}_1{F}_{KL}^1 \), \( c=\overline{w_1} \), \( d={w}_2+{L}_2{p}_2{F}_{L L}^2 \), \( e={F}_{LL}^4 \), \( f=-{F}_{TL}^4=-{F}_{LT}^4 \), g = w 4, \( h=-{F}_{LK}^1 \), \( j={p}_3\left({g}^{\prime }{F}_L^3+{ g F}_{L L}^3{f}^{\prime}\right) \), \( k=-\left[{p}_1{F}_{KK}^1+{p}_3\left({g}^{{\prime\prime} }{F}^3+{g}^{\prime }{F}_L^3{f}^{\prime}\right)\right] \), \( m={p}_3\left({g}^{\prime }{F}_T^3+{ g F}_{T L}^3{f}^{\prime}\right) \), n = f , p = w 3 f , \( q={p}_3{gF}_{LT}^3 \), \( s=-{p}_3{g^{\prime } F}_T^3 \), \( t={p}_3{gF}_{TT}^3+{F}_{TT}^4 \), u = L 3, v =  − (L − L 4).

Using the Cramer rule to solve (11.B1), we get:

$$ \begin{array}{l}{dL}_1/{ds}_1=-{F}_{KL}^1r\Big\{\left({p}_3{gF}_{TT}^3+{F}_{TT}^4\right)\left[{w}_2+{L}_2{p}_2{F}_{LL}^2-{w}_4\right]\\ {}+{p}_3{gF}_{TT}^3{F}_{LL}^4\left(L-{L}_4\right)-{F}_{TL}^4{p}_3{gL}_3{F}_{LT}^3\Big\}/{\Delta}_1<0\end{array} $$
$$ {dL}_2/{ds}_1\left(<,=,>\right)0 $$
$$ {dL}_4/{ds}_1\left(<,=,>\right)0 $$
$$ {dK}_3/{ds}_1=- ar\left( dt- gt+ fqu+{f}^2v- etv\right)/{\Delta}_1>0 $$
$$ {dK}_1/{ds}_1=-{dK}_3/{ds}_1<0 $$
$$ {dL}_3/{ds}_1={f^{\prime } dK}_3/{ds}_1>0 $$
$$ {dT}_3/{ds}_1\left(<,=,>\right)0 $$
$$ {dw}_3/{ds}_1\left(<,=,>\right)0 $$
$$ {dw}_4/{ds}_1\left(<,=,>\right)0 $$
$$ dr/{ds}_1={p}_1{F}_{KL}^1{dL}_1/{ds}_1+{p}_1{F}_{KK}^1{dK}_1/{ds}_1=0 $$
$$ d\tau /{ds}_1={F}_{TL}^4{dL}_4/{ds}_1+{F}_{TT}^4{dT}_4/{ds}_1\left(<,=,>\right)0 $$
$$ {dL}_1/{ds}_2={w}_3 fhsu/{\Delta}_1<0 $$
$$ {dL}_2/{ds}_2={w}_3 u\left( akt- bht- ams- fhs+ afns\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ {dL}_4/{ds}_2={w}_3 u\left( bht- akt+ ams\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ {dK}_3/{ds}_2=-{w}_3 afsu/{\Delta}_1>0 $$
$$ {dK}_1/{ds}_2=-{dK}_3/{ds}_2<0 $$
$$ {dL}_3/{ds}_2={f^{\prime } dK}_3/{ds}_2>0 $$
$$ {dT}_3/{ds}_2={w}_3 fu\left( ak- bh\right)/{\Delta}_1>0 $$
$$ {dw}_3/{ds}_2\left(<,=,>\right)0 $$
$$ {dw}_4/{ds}_2=-{w}_3 u\left({bf}^2 h- beht-{af}^2 k+ aekt- aems\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ dr/{ds}_2={p}_1{F}_{KL}^1{dL}_1/{ds}_2+{p}_1{F}_{KK}^1{dK}_1/{ds}_2=0 $$
$$ d\tau /{ds}_2={F}_{TL}^4{dL}_4/{ds}_2+{F}_{TT}^4{dT}_4/{ds}_2\left(<,=,>\right)0 $$
$$ {dL}_1/{ds}_3=-\tau hs\left( g- d+ ev\right)/{\Delta}_1<0 $$
$$ {dL}_2/{ds}_3\left(<,=,>\right)0 $$
$$ {dL}_4/{ds}_3\left(<,=,>\right)0 $$
$$ {dK}_3/{ds}_3= as\tau \left( g- d+ ev\right)/{\Delta}_1>0 $$
$$ {dK}_1/{ds}_3=-{dK}_3/{ds}_3<0 $$
$$ {dL}_3/{ds}_3={f^{\prime } dK}_3/{ds}_3>0 $$
$$ {dT}_3/{ds}_3=\tau \left( bh- ak\right)\left( g- d+ ev\right)/{\Delta}_1>0 $$
$$ {dw}_3/{ds}_3=\tau \left( bhq- akq+ ajs\right)\left( g- d+ ev\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ {dw}_4/{ds}_3\left(<,=,>\right)0 $$
$$ dr/{ds}_3={p}_1{F}_{KL}^1{dL}_1/{ds}_3+{p}_1{F}_{KK}^1{dK}_1/{ds}_3=0 $$
$$ d\tau /{ds}_3={F}_{TL}^4{dL}_4/{ds}_3+{F}_{TT}^4{dT}_4/{ds}_3\left(<,=,>\right)0 $$

1.3 Appendix C

When the labor endowment increases, the total differential of (11.5), (11.6), (11.7), (11.8), (11.9), (11.10), (11.11), (11.12), (11.13), (11.14), (11.15), (11.16), and (11.17′) can be written as the following (11.21):

$$ \begin{array}{ll}\hfill & \left[\begin{array}{ccccccc}\hfill {F}_{LL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{F}_{LK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_3\left({g^{\prime }F}_L^3+{gF}_{LL}^3{f}^{\prime}\right)\hfill & \hfill {p}_3{gF}_{LT}^3\hfill & \hfill -1\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {F}_{LL}^4\hfill & \hfill 0\hfill & \hfill -{F}_{LT}^4\hfill & \hfill 0\hfill & \hfill -1\hfill \\ {}\hfill {p}_1{F}_{KL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -\left[{p}_1{F}_{KK}^1+{p}_3\left({g^{{\prime\prime} }F}^3+{g^{\prime }F}_L^3{f}^{\prime}\right)\right]\hfill & \hfill -{p}_3{g^{\prime }F}_T^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -{F}_{TL}^4\hfill & \hfill {p}_3\left({g^{\prime }F}_T^3+{gF}_{TL}^3{f}^{\prime}\right)\hfill & \hfill {p}_3{gF}_{TT}^3+{F}_{TT}^4\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill {f}^{\prime}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill \overline{w_1}\hfill & \hfill {w}_2+{L}_2{p}_2{F}_{LL}^2\hfill & \hfill {w}_4\hfill & \hfill {w}_3{f}^{\prime}\hfill & \hfill 0\hfill & \hfill {L}_3\hfill & \hfill -\left(L-{L}_4\right)\hfill \end{array}\right]\\ {}& \times \left[\begin{array}{c}\hfill {dL}_1\hfill \\ {}\hfill {dL}_2\hfill \\ {}\hfill {dL}_4\hfill \\ {}\hfill {dK}_3\hfill \\ {}\hfill {dT}_3\hfill \\ {}\hfill {dw}_3\hfill \\ {}\hfill {dw}_4\hfill \end{array}\right]=\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill dL\hfill \\ {}\hfill {w}_4 dL\hfill \end{array}\right]\hfill \end{array} $$
(11.C1)

Apparently, the value of the coefficient matrix (11.C1) is Δ1.

When the capital endowment increases, the total differential of (11.5), (11.6), (11.7), (11.8), (11.9), (11.10), (11.11), (11.12), (11.13), (11.14), (11.15), (11.16), and (11.17′) is (11.22) as follows:

$$ \begin{array}{ll}\hfill & \left[\begin{array}{cccccccc}\hfill {F}_{LL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{F}_{LK}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_3\left({g^{\prime }F}_L^3+{gF}_{LL}^3{f}^{\prime}\right)\hfill & \hfill {p}_3{gF}_{LT}^3\hfill & \hfill -1\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {F}_{LL}^4\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{F}_{LT}^4\hfill & \hfill 0\hfill & \hfill -1\hfill \\ {}\hfill {p}_1{F}_{KL}^1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {p}_1{F}_{KK}^1\hfill & \hfill -{p}_3\left({g^{{\prime\prime} }F}^3+{g^{\prime }F}_L^3{f}^{\prime}\right)\hfill & \hfill -{p}_3{g^{\prime }F}_T^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -{F}_{TL}^4\hfill & \hfill 0\hfill & \hfill {p}_3\left({g^{\prime }F}_T^3+{gF}_{TL}^3{f}^{\prime}\right)\hfill & \hfill {p}_3{gF}_{TT}^3+{F}_{TT}^4\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 1\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill {f}^{\prime}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill \overline{w_1}\hfill & \hfill {w}_2+{L}_2{p}_2{F}_{LL}^2\hfill & \hfill {w}_4\hfill & \hfill 0\hfill & \hfill {w}_3{f}^{\prime}\hfill & \hfill 0\hfill & \hfill {L}_3\hfill & \hfill -\left(L-{L}_4\right)\hfill \end{array}\right]\\ {}& \times \left[\begin{array}{c}\hfill {dL}_1\hfill \\ {}\hfill {dL}_2\hfill \\ {}\hfill {dL}_4\hfill \\ {}\hfill {dK}_1\hfill \\ {}\hfill {dK}_3\hfill \\ {}\hfill {dT}_3\hfill \\ {}\hfill {dw}_3\hfill \\ {}\hfill {dw}_4\hfill \end{array}\right]=\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \\ {}\hfill dK\hfill \\ {}\hfill 0\hfill \end{array}\right]\hfill \end{array} $$
(11.C2)

Assume that the value of the matrix (11.C2) is Δ2, then Δ2 =  − Δ1.

Using the Cramer rule to solve (11.C1) and (11.C2), we get:

$$ {dL}_1/ dL= fhs\left( d- g\right)/{\Delta}_1>0 $$
$$ {dL}_2/ dL\left(<,=,>\right)0 $$
$$ {dL}_4/ dL=-\left( d- g\right)\left( akt- bht- ams\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ {dK}_3/ dL=- afs\left( d- g\right)/{\Delta}_1<0 $$
$$ {dK}_1/ dL=-{dK}_3/ dL>0 $$
$$ {dL}_3/ dL={f^{\prime } dK}_3/ dL<0 $$
$$ {dT}_3/ dL=- f\left( bh- ak\right)\left( d- g\right)/{\Delta}_1<0 $$
$$ {dw}_3/ dL=- f\left( bhq- akq+ ajs\right)\left( d- g\right)/{\Delta}_1\left(<,=,>\right)0 $$
$$ \begin{array}{l}{dw}_4/ dL=- f\left( d- g\right)\\ {}\left({bf}^2 h- beht-{af}^2 k+ aekt- aems\right)/{\Delta}_1\left(<,=,>\right)0\end{array} $$
$$ dr/ dL={p}_1{F}_{KL}^1{dL}_1/ dL+{p}_1{F}_{KK}^1{dK}_1/ dL=0 $$
$$ d\tau / dL={F}_{TL}^4{dL}_4/ dL+{F}_{TT}^4{dT}_4/ dL\left(<,=,>\right)0 $$
$$ {dL}_1/ dK\left(<,=,>\right)0 $$
$$ {dL}_2/ dK\left(<,=,>\right)0 $$
$$ {dL}_4/ dK=- ht\left( d- c\right)\left( z- s\right)/{\Delta}_2<0 $$
$$ {dK}_1/ dK\left(<,=,>\right)0 $$
$$ {dK}_3/ dK=\left( cfhs- dfhs\right)/{\Delta}_2>0 $$
$$ {dL}_3/ dK={f^{\prime } dK}_3/ dK>0 $$
$$ {dT}_3/ dK=\left( dfhz- cfhz\right)/{\Delta}_2>0 $$
$$ {dw}_3/ dK= cfh\left( js- zq\right)/{\Delta}_2>0 $$
$$ {dw}_4/ dK\left(<,=,>\right)0 $$
$$ dr/ dK={p}_1{F}_{KL}^1{dL}_1/ dK+{p}_1{F}_{KK}^1{dK}_1/ dK=0 $$
$$ d\tau / dK={F}_{TL}^4{dL}_4/ dK+{F}_{TT}^4{dT}_4/ dK\left(<,=,>\right)0 $$

In the above, the letters a, b, c, d, e, f, g, h, j, k, m, n, p, q, s, t, u, and v have the same meaning as in Appendix B. Besides, \( y={p}_1{F}_{KK}^1 \), \( z=-{p}_3\left({g}^{{\prime\prime} }{F}^3+{g}^{\prime }{F}_L^3{f}^{\prime}\right) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, X., Shen, Q., Gu, C., Ni, M. (2017). Analyzing the Effect of Advanced Agriculture Development Policy. In: Li, X. (eds) Labor Transfer in Emerging Economies. New Frontiers in Regional Science: Asian Perspectives, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-3569-2_11

Download citation

Publish with us

Policies and ethics