Skip to main content

SPIONs as Nano-Theranostics Agents

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

Abstract

With a rapid growth in different fields of science and technology, hopes for further improvement of human life were developed; among them is progress in medicine, which is directly linked with human health. A lot of researches have been conducted specifically for improving the current modalities of diagnosis and treatment of various diseases, especially cancer. Among them is the application of nanotechnology in the field of medicine, which is known as nanomedicine that can develop new therapeutic and diagnostic concepts in all areas of medicine. Nano-theranostics, which is based on the fusion of therapeutic and diagnostic technologies by using nanoparticles, is one of the newest approaches in this field and finally leads to individualized medicine. Magnetic nanoparticle with properties such as good biocompatibility and the ability of surface engineering could be considered as a candidate for theranostic application; briefly it not only could act as a carrier for drugs in drug delivery systems but also could act as therapeutic agent in hyperthermia. Moreover, it could be used as a contrast agent in magnetic resonance imaging (MRI) or could carry imaging agent on its surface. The ability of surface modification makes it possible to transmit engineered nanoparticles to the target organs and reduce side effects of drugs on the other organs; although in this situation external magnetic field could be used for targeting either. These features made us to study the ability of magnetic nanoparticle as a nanotheranostic agent in detail. In summary, in this context we try to introduce magnetic nanoparticle, different approaches that are be used for its synthesis, its applications in the field of treatment and diagnostic and finally its usage as a nanotheranostic agent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    MNPs.

  2. 2.

    MRI.

  3. 3.

    SPIONs.

  4. 4.

    MCLs.

  5. 5.

    CTCs.

  6. 6.

    NMR.

  7. 7.

    MS.

  8. 8.

    PEG.

  9. 9.

    FITC.

  10. 10.

    EPR.

  11. 11.

    PLA.

  12. 12.

    PGA.

  13. 13.

    PVA.

  14. 14.

    PLGA.

  15. 15.

    PNIPAAM.

  16. 16.

    PVCL.

  17. 17.

    siRNA.

  18. 18.

    PTT.

  19. 19.

    NIR.

  20. 20.

    PTA.

  21. 21.

    AMF.

  22. 22.

    PDT.

  23. 23.

    ROS.

  24. 24.

    SDT.

  25. 25.

    HPG.

  26. 26.

    HSA.

  27. 27.

    GO.

  28. 28.

    PEI.

  29. 29.

    FA.

  30. 30.

    rGO.

  31. 31.

    PA.

  32. 32.

    FGF.

References

  1. Z. Dai, Advances in Nanotheranostics I: Design and Fabrication of Theranosic Nanoparticles (Springer, Berlin, 2015)

    Google Scholar 

  2. K.Y. Choi, G. Liu, S. Lee, X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012)

    Article  Google Scholar 

  3. Y. Zhou, X. Liang, Z. Dai, Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale 8, 12394–12405 (2016)

    Article  Google Scholar 

  4. Q. Chen, H. Ke, Z. Dai, Z. Liu, Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 73, 214–230 (2015)

    Article  Google Scholar 

  5. K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. Method. Protoc. 624, 25–37 (2010)

    Article  Google Scholar 

  6. X. Wu, Y. Gao, C.-M. Dong, Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Advances 5, 13787–13796 (2015)

    Article  Google Scholar 

  7. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  Google Scholar 

  8. S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8, 1112–1120 (2003)

    Article  Google Scholar 

  9. J.T. Cole, N.B. Holland, Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Trans. Res. 5, 295–309 (2015)

    Article  Google Scholar 

  10. B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor, H.S. Swai, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed. Nanotechnol. Biol. Med. 6, 662–671 (2010)

    Article  Google Scholar 

  11. H. Markides, M. Rotherham, A. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13 (2012)

    Article  Google Scholar 

  12. M. Mahmoudi, A. Simchi, M. Imani, M.A. Shokrgozar, A.S. Milani, U.O. Häfeli, P. Stroeve, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75, 300–309 (2010)

    Article  Google Scholar 

  13. S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147–166 (2012)

    Article  Google Scholar 

  14. A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)

    Article  Google Scholar 

  15. S.S. Kelkar, T.M. Reineke, Theranostics: combining imaging and therapy. Biocon. Chem. 22, 1879–1903 (2011)

    Article  Google Scholar 

  16. J. Wang, Y. Gao, Y. Hou, F. Zhao, F. Pu, X. Liu, Z. Wu, Y. Fan, Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J. Nanomater. 2012, 1–11 (2012)

    Google Scholar 

  17. S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2011)

    Article  Google Scholar 

  18. Q. Huang, H. Yu, Q. Ru, Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75, R50–R57 (2010)

    Article  Google Scholar 

  19. V. Sanna, N. Pala, M. Sechi, Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467–483 (2014)

    Google Scholar 

  20. T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)

    Article  Google Scholar 

  21. B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010)

    Article  Google Scholar 

  22. Y. Gao, J. Xie, H. Chen, S. Gu, R. Zhao, J. Shao, L. Jia, Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 32, 761–777 (2014)

    Article  Google Scholar 

  23. M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012)

    Article  Google Scholar 

  24. J.V. Jokerst, S.S. Gambhir, Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011)

    Article  Google Scholar 

  25. B. Fadeel, A.E. Garcia-Bennett, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)

    Article  Google Scholar 

  26. R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)

    Article  Google Scholar 

  27. C.P. McCoy, C. Brady, J.F. Cowley, S.M. McGlinchey, N. McGoldrick, D.J. Kinnear, G.P. Andrews, D.S. Jones, Triggered drug delivery from biomaterials. Expert Opin. Drug Deliv. 7, 605–616 (2010)

    Article  Google Scholar 

  28. P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010)

    Article  Google Scholar 

  29. K.H. Martin, P.A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 329–345 (2013)

    Article  Google Scholar 

  30. R.R. Ragheb, D. Kim, A. Bandyopadhyay, H. Chahboune, B. Bulutoglu, H. Ezaldein, J.M. Criscione, T.M. Fahmy, Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013)

    Article  Google Scholar 

  31. D. Maity, S.-G. Choo, J. Yi, J. Ding, J.M. Xue, Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321, 1256–1259 (2009)

    Article  Google Scholar 

  32. S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)

    Article  Google Scholar 

  33. J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007)

    Article  Google Scholar 

  34. D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)

    Article  Google Scholar 

  35. A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29, 323–332 (2011)

    Article  Google Scholar 

  36. A.H. Lu, E.E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  37. M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010)

    Article  Google Scholar 

  38. C. Okoli, Development of protein-functionalized magnetic iron oxide nanoparticles: potential application in water treatment, Doctoral thesis, 2012

    Google Scholar 

  39. D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801–5810 (2007)

    Article  Google Scholar 

  40. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  41. S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  Google Scholar 

  42. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)

    Article  Google Scholar 

  43. P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182–R198 (2003)

    Article  Google Scholar 

  44. J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80, 333–341 (2007)

    Article  Google Scholar 

  45. Z. Liu, Y. Liu, K. Yao, Z. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process. 10, 83–87 (2002)

    Article  Google Scholar 

  46. E. Bertolucci, A.M.R. Galletti, C. Antonetti, F. Piccinelli, M. Marracci, B. Tellini, C. Visone, Chemical and magnetic properties characterization of magnetic nanoparticles, in Instrumentation and Measurement Technology Conference (I2MTC), IEEE International (2015), pp. 1492–1496

    Google Scholar 

  47. V. Dolgovskiy, V. Lebedev, S. Colombo, A. Weis, B. Michen, L. Ackermann-Hirschi, A. Petri-Fink, A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry. J. Magn. Magn. Mater. 379, 137–150 (2015)

    Article  Google Scholar 

  48. K.C.-F. Leung, S. Xuan, Y.J. Wang, From micro to nano magnetic spheres: size-controllable synthesis. Multilayer Coat. Biomed. Appl. 13, 15 (2016)

    Google Scholar 

  49. P.I. Soares, F. Lochte, C. Echeverria, L.C. Pereira, J.T. Coutinho, I.M. Ferreira, C.M. Novo, Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26, 425704 (2015)

    Article  Google Scholar 

  50. K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest, Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009)

    Article  Google Scholar 

  51. C.C. Berry, S. Wells, S. Charles, A.S. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24, 4551–4557 (2003)

    Article  Google Scholar 

  52. A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010)

    Article  Google Scholar 

  53. J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010)

    Article  Google Scholar 

  54. D. Stanicki, L. Vander Elst, R.N. Muller, S. Laurent, Synthesis and processing of magnetic nanoparticles. Curr. Opin. Chem. Eng. 8, 7–14 (2015)

    Google Scholar 

  55. C. Corot, P. Robert, J.-M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)

    Article  Google Scholar 

  56. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)

    Article  Google Scholar 

  57. X. Li, W. Liu, L. Sun, K.E. Aifantis, B. Yu, Y. Fan, Q. Feng, F. Cui, F. Watari, Effects of physicochemical properties of nanomaterials on their toxicity. J. Biomed. Mater. Res., Part A 103, 2499–2507 (2015)

    Article  Google Scholar 

  58. K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011)

    Article  Google Scholar 

  59. M. Kim, J. Jung, J. Lee, K. Na, S. Park, J. Hyun, Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles. Colloids Surf., B 76, 236–240 (2010)

    Article  Google Scholar 

  60. M. Szekeres, I.Y. Tóth, E. Illés, A. Hajdú, I. Zupkó, K. Farkas, G. Oszlánczi, L. Tiszlavicz, E. Tombácz, Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14, 14550–14574 (2013)

    Article  Google Scholar 

  61. S. Ghosh, W. Jiang, J.D. McClements, B. Xing, Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036–8043 (2011)

    Article  Google Scholar 

  62. D. Singh, J.M. McMillan, X.-M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine 9, 469–485 (2014)

    Article  Google Scholar 

  63. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  64. S. Mornet, J. Portier, E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 293, 127–134 (2005)

    Article  Google Scholar 

  65. L. LaConte, N. Nitin, G. Bao, Magnetic nanoparticle probes. Mater. Today 8, 32–38 (2005)

    Article  Google Scholar 

  66. A.A. Ismail, Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl. Catal. B 58, 115–121 (2005)

    Article  Google Scholar 

  67. Z. Dai, F. Meiser, H. Möhwald, Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J. Colloid Interface Sci. 288, 298–300 (2005)

    Article  Google Scholar 

  68. A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)

    Article  Google Scholar 

  69. A. Roca, M. Morales, K. O’Grady, C. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17, 2783 (2006)

    Article  Google Scholar 

  70. Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)

    Article  Google Scholar 

  71. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook Magn. Mater. 16, 403–482 (2006)

    Article  Google Scholar 

  72. W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007)

    Article  Google Scholar 

  73. J. Merikhi, H.-O. Jungk, C. Feldmann, Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings. J. Mater. Chem. 10, 1311–1314 (2000)

    Article  Google Scholar 

  74. S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000)

    Article  Google Scholar 

  75. R.A. Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interface Sci. 284, 489–494 (2005)

    Article  Google Scholar 

  76. E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  Google Scholar 

  77. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)

    Article  Google Scholar 

  78. Y.-H. Zheng, Y. Cheng, F. Bao, Y.-S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 41, 525–529 (2006)

    Article  Google Scholar 

  79. X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)

    Article  Google Scholar 

  80. H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 5, 1722–1731 (2013)

    Article  Google Scholar 

  81. B.K. Paul, S.P. Moulik, Uses and applications of microemulsions. Curr. Sci. Bangalore 80, 990–1001 (2001)

    Google Scholar 

  82. M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 45, 195001 (2012)

    Article  Google Scholar 

  83. S. Ghorbanzadeh-Mashkani, P. Tajer-Mohammad-Ghazvini, A. Nozad-Golikand, R. Kasra-Kermanshahi, M.-R. Davarpanah, Synthesis of sterile and pyrogen free biogenic magnetic nanoparticles: biotechnological potential of magnetotactic bacteria for production of nanomaterials, in Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET), vol. 74 (2013), pp. 194–198

    Google Scholar 

  84. C. Prasad, K. Sreenivasulu, S. Gangadhara, P. Venkateswarlu, A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)

    Article  Google Scholar 

  85. M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954–5964 (2013)

    Article  Google Scholar 

  86. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)

    Article  Google Scholar 

  87. A. Ito, M. Kamihira, Tissue engineering using magnetite nanoparticles. Progr. Mol. Biol. Trans. Sci. 104, 355–395 (2010)

    Article  Google Scholar 

  88. Š. Kubinová, E. Syková, Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol. 19, 144–156 (2010)

    Article  Google Scholar 

  89. N. Bock, A. Riminucci, C. Dionigi, A. Russo, A. Tampieri, E. Landi, V.A. Goranov, M. Marcacci, V. Dediu, A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6, 786–796 (2010)

    Article  Google Scholar 

  90. M. Ishii, R. Shibata, Y. Numaguchi, T. Kito, H. Suzuki, K. Shimizu, A. Ito, H. Honda, T. Murohara, Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler. Thromb. Vasc. Biol. 31, 2210–2215 (2011)

    Article  Google Scholar 

  91. M. Mahmoudi, M. Zhao, Y. Matsuura, S. Laurent, P.C. Yang, D. Bernstein, P. Ruiz-Lozano, V. Serpooshan, Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts: BI 6, 111–115 (2016)

    Google Scholar 

  92. V. Kandi, S. Kandi, Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol. Health 37, e2015020 (2015)

    Article  Google Scholar 

  93. E.N. Taylor, K.M. Kummer, N.G. Durmus, K. Leuba, K.M. Tarquinio, T.J. Webster, Superparamagnetic Iron Oxide Nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8, 3016–3027 (2012)

    Article  Google Scholar 

  94. T. Sasaki, N. Iwasaki, K. Kohno, M. Kishimoto, T. Majima, S.I. Nishimura, A. Minami, Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res., Part A 86, 969–978 (2008)

    Article  Google Scholar 

  95. A. Ito, H. Akiyama, Y. Kawabe, M. Kamihira, Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)

    Article  Google Scholar 

  96. A. Ito, Y. Takizawa, H. Honda, K.-I. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 10, 833–840 (2004)

    Article  Google Scholar 

  97. E.A. Lee, H. Yim, J. Heo, H. Kim, G. Jung, N.S. Hwang, Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharmacal Res. 37, 120–128 (2014)

    Article  Google Scholar 

  98. Y. Gao, J. Lim, S.-H. Teoh, C. Xu, Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44, 6306–6329 (2015)

    Article  Google Scholar 

  99. G.R. Souza, J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.-M. Georgescu, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)

    Article  Google Scholar 

  100. L.J. Santos, R.L. Reis, M.E. Gomes, Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)

    Article  Google Scholar 

  101. L. Borlido, A. Azevedo, A. Roque, M. Aires-Barros, Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385 (2013)

    Article  Google Scholar 

  102. I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2, 1–17 (2004)

    Article  Google Scholar 

  103. P.A. Liberti, C.G. Rao, L.W. Terstappen, Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J. Magn. Magn. Mater. 225, 301–307 (2001)

    Article  Google Scholar 

  104. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)

    Article  Google Scholar 

  105. A.H. Latham, M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 41, 411–420 (2008)

    Article  Google Scholar 

  106. K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162–1176 (2015)

    Article  Google Scholar 

  107. J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Magnetic separation techniques in sample preparation for biological analysis: a review. J. Pharm. Biomed. Anal. 101, 84–101 (2014)

    Article  Google Scholar 

  108. F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour. Technol. 110, 120–124 (2012)

    Article  Google Scholar 

  109. M. Uyttendaele, I. Van Hoorde, J. Debevere, The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54, 205–212 (2000)

    Article  Google Scholar 

  110. J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009)

    Article  Google Scholar 

  111. M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Boehm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)

    Article  Google Scholar 

  112. J.-C. Leroux, Injectable nanocarriers for biodetoxification. Nat. Nanotechnol. 2, 679–684 (2007)

    Article  Google Scholar 

  113. M.D. Kaminski, A.J. Rosengart, Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J. Magn. Magn. Mater. 293, 398–403 (2005)

    Article  Google Scholar 

  114. M. Rahman, A.A. Saei, H. Amiri, M. Mahmoudi, Biomedical applications of superparamagnetic nanoparticles in molecular scale. Curr. Org. Chem. 19, 982–990 (2015)

    Article  Google Scholar 

  115. L. Wang, Z. Yang, J. Gao, K. Xu, H. Gu, B. Zhang, X. Zhang, B. Xu, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)

    Article  Google Scholar 

  116. J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2013)

    Article  Google Scholar 

  117. H. Lee, T.J. Yoon, R. Weissleder, Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. 48, 5657–5660 (2009)

    Article  Google Scholar 

  118. K. El-Boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007)

    Article  Google Scholar 

  119. S. Ryan, A.J. Kell, H. van Faassen, L.-L. Tay, B. Simard, R. MacKenzie, M. Gilbert, J. Tanha, Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Biocon. Chem. 20, 1966–1974 (2009)

    Article  Google Scholar 

  120. C. Kaittanis, S.A. Naser, J.M. Perez, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7, 380–383 (2007)

    Article  Google Scholar 

  121. S. Pal, E.C. Alocilja, Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens. Bioelectron. 24, 1437–1444 (2009)

    Article  Google Scholar 

  122. J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)

    Article  Google Scholar 

  123. H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 9, 941–949 (2006)

    Google Scholar 

  124. Q. Liu, J. Shi, M. Cheng, G. Li, D. Cao, G. Jiang, Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. Chem. Commun. 48, 1874–1876 (2012)

    Article  Google Scholar 

  125. H. Chen, D. Qi, C. Deng, P. Yang, X. Zhang, Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis. Proteomics 9, 380–387 (2009)

    Article  Google Scholar 

  126. J.S. Kim, C.A. Valencia, R. Liu, W. Lin, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Biocon. Chem. 18, 333–341 (2007)

    Article  Google Scholar 

  127. S. Mazzucchelli, M. Colombo, C. De Palma, A. Salvade, P. Verderio, M.D. Coghi, E. Clementi, P. Tortora, F. Corsi, D. Prosperi, Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 4, 5693–5702 (2010)

    Article  Google Scholar 

  128. H. Cai, X. Gu, M.S. Scanlan, C.R. Lively, Development of a quantitative PCR assay for residual mouse DNA and comparison of four sample purification methods for DNA isolation. J. Pharm. Biomed. Anal. 55, 71–77 (2011)

    Article  Google Scholar 

  129. D. Leung, S.O. Kang, E.V. Anslyn, Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012)

    Article  Google Scholar 

  130. J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22, 435–439 (2004)

    Article  Google Scholar 

  131. A. Soozanipour, A. Taheri-Kafrani, A.L. Isfahani, Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 270, 235–243 (2015)

    Article  Google Scholar 

  132. K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaei, Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011)

    Article  Google Scholar 

  133. M. Pečová, M. Šebela, Z. Markova, K. Polakova, J. Čuda, K. Šafářová, R. Zbořil, Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24, 125102 (2013)

    Article  Google Scholar 

  134. C.-C. Yu, Y.-Y. Kuo, C.-F. Liang, W.-T. Chien, H.-T. Wu, T.-C. Chang, F.-D. Jan, C.-C. Lin, Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Biocon. Chem. 23, 714–724 (2012)

    Article  Google Scholar 

  135. S. Metz, G. Bonaterra, M. Rudelius, M. Settles, E.J. Rummeny, H.E. Daldrup-Link, Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)

    Article  Google Scholar 

  136. J.W. Bulte, Magnetic nanoparticles as markers for cellular MR imaging. J. Magn. Magn. Mater. 289, 423–427 (2005)

    Article  Google Scholar 

  137. C. Zhang, T. Liu, J. Gao, Y. Su, C. Shi, Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev. Med. Chem. 10, 194–203 (2010)

    Article  Google Scholar 

  138. A.S. Arbab, G.T. Yocum, H. Kalish, E.K. Jordan, S.A. Anderson, A.Y. Khakoo, E.J. Read, J.A. Frank, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223 (2004)

    Article  Google Scholar 

  139. J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)

    Article  Google Scholar 

  140. C.C. Berry, Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42, 224003 (2009)

    Article  Google Scholar 

  141. J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)

    Article  Google Scholar 

  142. J.E. Jaetao, K.S. Butler, N.L. Adolphi, D.M. Lovato, H.C. Bryant, I. Rabinowitz, S.S. Winter, T.E. Tessier, H.J. Hathaway, C. Bergemann, Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 69, 8310–8316 (2009)

    Article  Google Scholar 

  143. T. Kekarainen, S. Mannelin, J. Laine, T. Jaatinen, Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biol. 7, 1–10 (2006)

    Article  Google Scholar 

  144. K. Pantel, C. Alix-Panabières, S. Riethdorf, Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009)

    Article  Google Scholar 

  145. V.I. Shubayev, T.R. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)

    Article  Google Scholar 

  146. X. Chen, S.T. Wong, Cancer theranostics: An introduction. Cancer Theranostics, Chap. 1, 3–8 (2014)

    Article  Google Scholar 

  147. B.T. Luk, L. Zhang, Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 6, 21859–21873 (2014)

    Article  Google Scholar 

  148. M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554–3560 (2014)

    Article  Google Scholar 

  149. S.D. Jo, S.H. Ku, Y.-Y. Won, S.H. Kim, I.C. Kwon, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6, 1362–1377 (2016)

    Article  Google Scholar 

  150. J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)

    Article  Google Scholar 

  151. L.Y. Rizzo, B. Theek, G. Storm, F. Kiessling, T. Lammers, Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol. 24, 1159–1166 (2013)

    Article  Google Scholar 

  152. T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7, 1899–1912 (2010)

    Article  Google Scholar 

  153. A. Radomska, J. Leszczyszyn, M.W. Radomski, The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 25, 151 (2016)

    Article  Google Scholar 

  154. S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010)

    Article  Google Scholar 

  155. B.T. Luk, R.H. Fang, L. Zhang, Lipid-and polymer-based nanostructures for cancer theranostics. Theranostics 2, 1117–1126 (2012)

    Article  Google Scholar 

  156. M.S. Muthu, D.T. Leong, L. Mei, S.-S. Feng, Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660–677 (2014)

    Article  Google Scholar 

  157. T.H. Kim, S. Lee, X. Chen, Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013)

    Article  Google Scholar 

  158. Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (The Institute of Electrical and Electronics Engineers Press, 2000)

    Google Scholar 

  159. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Bellingham, WA, 2009)

    Google Scholar 

  160. M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. 97, 9226–9233 (2000)

    Article  Google Scholar 

  161. T.A. Holly, B.G. Abbott, M. Al-Mallah, D.A. Calnon, M.C. Cohen, F.P. DiFilippo, E.P. Ficaro, M.R. Freeman, R.C. Hendel, D. Jain, Single photon-emission computed tomography. J. Nucl. Cardiol. 17, 941–973 (2010)

    Article  Google Scholar 

  162. C.R. Hill, J.C. Bamber, G. ter Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004)

    Google Scholar 

  163. M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000)

    Google Scholar 

  164. G. Bao, S. Mitragotri, S. Tong, Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013)

    Article  Google Scholar 

  165. Y. Bao, T. Wen, A.C.S. Samia, A. Khandhar, K.M. Krishnan, Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51, 513–553 (2016)

    Article  Google Scholar 

  166. N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)

    Article  Google Scholar 

  167. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)

    Article  Google Scholar 

  168. M.F. Kircher, J.K. Willmann, Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263, 633–643 (2012)

    Article  Google Scholar 

  169. J.K. Willmann, N. van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008)

    Article  Google Scholar 

  170. N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012)

    Article  Google Scholar 

  171. N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015)

    Article  Google Scholar 

  172. Z.R. Stephen, F.M. Kievit, M. Zhang, Magnetite nanoparticles for medical MR imaging. Mater. Today 14, 330–338 (2011)

    Article  Google Scholar 

  173. P. Gatehouse, G. Bydder, Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 58, 1–19 (2003)

    Article  Google Scholar 

  174. M.M. Britton, Magnetic resonance imaging of chemistry. Chem. Soc. Rev. 39, 4036–4043 (2010)

    Article  Google Scholar 

  175. P. Caravan, C.T. Farrar, L. Frullano, R. Uppal, Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009)

    Article  Google Scholar 

  176. Y.W. Jun, J.H. Lee, J. Cheon, Chemical design of nanoparticle probes for high‐performance magnetic resonance imaging. Angewandte Chemie International Edition, 47, 5122–5135 (2008)

    Google Scholar 

  177. M.K. Uchiyama, S.H. Toma, S.F. de Paula Rodrigues, A.L.B. Shimada, R.A. Loiola, H.J.C. Rodríguez, P.V. Oliveira, M.S. Luz, S.R. Rabbani, H.E. Toma, Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int. J. Nanomed. 10, 4731–4746 (2015)

    Google Scholar 

  178. P. Reimer, T. Balzer, Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003)

    Google Scholar 

  179. J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)

    Article  Google Scholar 

  180. M. Longmire, P.L. Choyke, H. Kobayashi, Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats (2008)

    Google Scholar 

  181. E. Taboada, E. Rodríguez, A. Roig, J. Oró, A. Roch, R.N. Muller, Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23, 4583–4588 (2007)

    Article  Google Scholar 

  182. M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, C. Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomed. 2, 609 (2007)

    Google Scholar 

  183. D. Artemov, N. Mori, B. Okollie, Z.M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)

    Article  Google Scholar 

  184. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2016)

    Article  Google Scholar 

  185. J.M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5, 261–264 (2004)

    Article  Google Scholar 

  186. R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharmacol. 18, 18–27 (2014)

    Article  Google Scholar 

  187. A. Neuwelt, N. Sidhu, C.-A.A. Hu, G. Mlady, S.C. Eberhardt, L.O. Sillerud, Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204, W302–W313 (2015)

    Article  Google Scholar 

  188. A. Millon, S. Dickson, A. Klink, D. Izquierdo-Garcia, J. Bini, E. Lancelot, S. Ballet, P. Robert, J.M. de Castro, C. Corot, Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18 F-FDG using a combined PET/MR scanner. Atherosclerosis 228, 339–345 (2013)

    Article  Google Scholar 

  189. M.J. Jacobin-Valat, K. Deramchia, S. Mornet, C.E. Hagemeyer, S. Bonetto, R. Robert, M. Biran, P. Massot, S. Miraux, S. Sanchez, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 24, 413–424 (2011)

    Google Scholar 

  190. M.A. Busquets, R. Sabaté, J. Estelrich, Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 9, 1–10 (2014)

    Article  Google Scholar 

  191. M.M. Vellinga, R.D.O. Engberink, A. Seewann, P.J. Pouwels, M.P. Wattjes, S.M. van der Pol, C. Pering, C.H. Polman, H.E. de Vries, J.J. Geurts, Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)

    Article  Google Scholar 

  192. J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010)

    Article  Google Scholar 

  193. O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005)

    Article  Google Scholar 

  194. H. Lee, M.K. Yu, S. Park, S. Moon, J.J. Min, Y.Y. Jeong, H.-W. Kang, S. Jon, Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)

    Article  Google Scholar 

  195. Y. Wang, X. Xie, X. Wang, G. Ku, K.L. Gill, D.P. O’Neal, G. Stoica, L.V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)

    Article  Google Scholar 

  196. M.J. Welch, C.J. Hawker, K.L. Wooley, The advantages of nanoparticles for PET. J. Nucl. Med. 50, 1743–1746 (2009)

    Article  Google Scholar 

  197. N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents. Adv. Mater. 25, 2641–2660 (2013)

    Article  Google Scholar 

  198. S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, D. Menon, Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 4, 251–260 (2011)

    Article  Google Scholar 

  199. J. Liu, W. Zhang, H. Zhang, Z. Yang, T. Li, B. Wang, X. Huo, R. Wang, H. Chen, A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 49, 4938–4940 (2013)

    Article  Google Scholar 

  200. Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32, 6155–6163 (2011)

    Article  Google Scholar 

  201. F. Kiessling, J. Huppert, M. Palmowski, Functional and molecular ultrasound imaging: concepts and contrast agents. Curr. Med. Chem. 16, 627–642 (2009)

    Article  Google Scholar 

  202. R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 15, 842–850 (2010)

    Article  Google Scholar 

  203. U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale 7, 4291–4305 (2015)

    Article  Google Scholar 

  204. O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015)

    Article  Google Scholar 

  205. A.S. Gupta, Nanomedicine approaches in vascular disease: a review, Nanomedicine: Nanotechnology. Biol. Med. 7, 763–779 (2011)

    Google Scholar 

  206. S. Roussakow, The history of hyperthermia rise and decline, in Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013) p. 428027

    Google Scholar 

  207. O.S. Nielsen, M. Horsman, J. Overgaard, A future for hyperthermia in cancer treatment? Eur. J. Cancer 37, 1587–1589 (2001)

    Article  Google Scholar 

  208. S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237–247 (2006)

    Article  Google Scholar 

  209. P. Moroz, S. Jones, B. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)

    Article  Google Scholar 

  210. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)

    Article  Google Scholar 

  211. A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)

    Article  Google Scholar 

  212. C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)

    Article  Google Scholar 

  213. M.F.X. Gnant, E.M. Turner, H.R. Alexander, Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine 12, 339–347 (2000)

    Article  Google Scholar 

  214. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia. Critical Rev. Oncol./Hematol. 43, 33–56 (2002)

    Article  Google Scholar 

  215. E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D Appl. Phys. 43, 474011 (2010)

    Article  Google Scholar 

  216. T.L. Kalber, K.L. Ordidge, P. Southern, M.R. Loebinger, P.G. Kyrtatos, Q.A. Pankhurst, M.F. Lythgoe, S.M. Janes, Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 11, 1973–1983 (2016)

    Article  Google Scholar 

  217. V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)

    Article  Google Scholar 

  218. M. Hans, A. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6, 319–327 (2002)

    Article  Google Scholar 

  219. O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009)

    Article  Google Scholar 

  220. S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2, 1–6 (2007)

    Article  Google Scholar 

  221. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65, 271–284 (2000)

    Article  Google Scholar 

  222. F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010)

    Article  Google Scholar 

  223. F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027–9039 (2013)

    Article  Google Scholar 

  224. O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006)

    Article  Google Scholar 

  225. M. Muthiah, I.-K. Park, C.-S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31, 1224–1236 (2013)

    Article  Google Scholar 

  226. B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)

    Article  Google Scholar 

  227. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)

    Article  Google Scholar 

  228. A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani, R. Miri, Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic onco-theranostic system for cancer diagnosis and therapy. Int. J. Pharm. 500, 62–76 (2016)

    Article  Google Scholar 

  229. B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6, 53–70 (2009)

    Article  Google Scholar 

  230. C. de las Heras Alarcón, S. Pennadam, C. Alexander, Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34, 276–285 (2005)

    Google Scholar 

  231. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010)

    Article  Google Scholar 

  232. M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20, 2472–2477 (2004)

    Article  Google Scholar 

  233. S.K. Yen, P. Padmanabhan, S.T. Selvan, Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3, 986–1003 (2013)

    Article  Google Scholar 

  234. L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv. Funct. Mater. 22, 5107–5117 (2012)

    Article  Google Scholar 

  235. A.A. Moghanjoughi, D. Khoshnevis, A. Zarrabi, A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 6, 333–340 (2016)

    Article  Google Scholar 

  236. H. Mousavi, B. Movahedi, A. Zarrabi, M. Jahandar, A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics. RSC Adv. 5, 77255–77263 (2015)

    Article  Google Scholar 

  237. N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int. J. Mol. Sci. 11, 1759–1776 (2010)

    Article  Google Scholar 

  238. N.G. Durmus, E.N. Taylor, K.M. Kummer, T.J. Webster, Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater. 25, 5706–5713 (2013)

    Article  Google Scholar 

  239. J.H. Maeng, D.-H. Lee, K.H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31, 4995–5006 (2010)

    Article  Google Scholar 

  240. F.M. Kievit, F.Y. Wang, C. Fang, H. Mok, K. Wang, J.R. Silber, R.G. Ellenbogen, M. Zhang, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release 152, 76–83 (2011)

    Article  Google Scholar 

  241. O. Mykhaylyk, Y.S. Antequera, D. Vlaskou, C. Plank, Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2, 2391–2411 (2007)

    Article  Google Scholar 

  242. S. Govindarajan, K. Kitaura, M. Takafuji, H. Ihara, K. Varadarajan, A.B. Patel, V. Gopal, Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int. J. Pharm. 446, 87–99 (2013)

    Article  Google Scholar 

  243. U. Schillinger, T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krötz, J. Hirschberger, C. Bergemann, C. Plank, Advances in magnetofection—magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005)

    Article  Google Scholar 

  244. P. Jendelová, V. Herynek, J. DeCroos, K. Glogarová, B. Andersson, M. Hájek, E. Syková, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50, 767–776 (2003)

    Article  Google Scholar 

  245. D.K. Kirui, D.A. Rey, C.A. Batt, Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21, 105105 (2010)

    Article  Google Scholar 

  246. M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, D. Shi, Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 4078–4088 (2013)

    Article  Google Scholar 

  247. M. Thandu, V. Rapozzi, L. Xodo, F. Albericio, C. Comuzzi, S. Cavalli, “Clicking” porphyrins to magnetic nanoparticles for photodynamic therapy. ChemPlusChem 79, 90–98 (2014)

    Article  Google Scholar 

  248. D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista, L.M. Rossi, Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23, 8194–8199 (2007)

    Article  Google Scholar 

  249. A.E. Fard, A. Zarepour, A. Zarrabi, A. Shanei, H. Salehi, Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)

    Article  Google Scholar 

  250. H. Xu, X. Zhang, R. Han, P. Yang, H. Ma, Y. Song, Z. Lu, W. Yin, X. Wu, H. Wang, Nanoparticles in sonodynamic therapy: state of the art review. RSC Advances 6, 50697–50705 (2016)

    Article  Google Scholar 

  251. C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)

    Article  Google Scholar 

  252. H.-M. Yang, B.C. Oh, J.H. Kim, T. Ahn, H.-S. Nam, C.W. Park, J.-D. Kim, Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf., A 391, 208–215 (2011)

    Article  Google Scholar 

  253. H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, Z. Liu, Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32, 9364–9373 (2011)

    Article  Google Scholar 

  254. M. Jahandar, A. Zarrabi, M.A. Shokrgozar, H. Mousavi, Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express 2, 125002 (2015)

    Article  Google Scholar 

  255. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006)

    Article  Google Scholar 

  256. H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, J. Wang, Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym. 118, 209–217 (2015)

    Article  Google Scholar 

  257. Q. Quan, J. Xie, H. Gao, M. Yang, F. Zhang, G. Liu, X. Lin, A. Wang, H.S. Eden, S. Lee, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm. 8, 1669–1676 (2011)

    Article  Google Scholar 

  258. K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 131, 10637–10644 (2009)

    Article  Google Scholar 

  259. C. Wang, S. Ravi, U.S. Garapati, M. Das, M. Howell, J. Mallela, S. Alwarappan, S.S. Mohapatra, S. Mohapatra, Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1, 4396–4405 (2013)

    Article  Google Scholar 

  260. H. Yang, Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, Y. Liu, Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4, 7072 (2014)

    Article  Google Scholar 

  261. M.K. Jaiswal, M. De, S.S. Chou, S. Vasavada, R. Bleher, P.V. Prasad, D. Bahadur, V.P. Dravid, Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl. Mater. Interfaces 6, 6237–6247 (2014)

    Article  Google Scholar 

  262. M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32, 1890–1905 (2011)

    Article  Google Scholar 

  263. G.R. Reddy, M.S. Bhojani, P. McConville, J. Moody, B.A. Moffat, D.E. Hall, G. Kim, Y.-E.L. Koo, M.J. Woolliscroft, J.V. Sugai, Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006)

    Article  Google Scholar 

  264. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868–1872 (2012)

    Article  Google Scholar 

  265. Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014)

    Article  Google Scholar 

  266. L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee, Z. Liu, Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33, 2215–2222 (2012)

    Article  Google Scholar 

  267. W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 5392–5397 (2011)

    Article  Google Scholar 

  268. H.-Y. Huang, S.-H. Hu, S.-Y. Hung, C.-S. Chiang, H.-L. Liu, T.-L. Chiu, H.-Y. Lai, Y.-Y. Chen, S.-Y. Chen, SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Controlled Release 172, 118–127 (2013)

    Article  Google Scholar 

  269. J. Huang, M. Guo, H. Ke, C. Zong, B. Ren, G. Liu, H. Shen, Y. Ma, X. Wang, H. Zhang, Rational Design and Synthesis of γFe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Adv. Mater. 27, 5049–5056 (2015)

    Article  Google Scholar 

  270. D. Calle, V. Negri, P. Ballesteros, S. Cerdán, Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics (2015)

    Google Scholar 

  271. T. Fu, Q. Kong, H. Sheng, L. Gao, Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016, 2412958 (2016)

    Google Scholar 

  272. L. Moraes, A. Vasconcelos-dos-Santos, F.C. Santana, M.A. Godoy, P.H. Rosado-de-Castro, R.L. Azevedo-Pereira, W.M. Cintra, E.L. Gasparetto, M.F. Santiago, R. Mendez-Otero, Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res. 9, 143–155 (2012)

    Article  Google Scholar 

  273. P. Wang, M.V. Yigit, Z. Medarova, L. Wei, G. Dai, C. Schuetz, A. Moore, Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60, 565–571 (2011)

    Article  Google Scholar 

  274. N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012)

    Article  Google Scholar 

  275. C. von Zur, D.Von Muhlen, N. Elverfeldt, I. Bassler, B. Neudorfer, A. Steitz, H. Petri-Fink, C. Hofmann, K. Bode, Peter, Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 193, 102–111 (2007)

    Article  Google Scholar 

  276. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105, 14265–14270 (2008)

    Article  Google Scholar 

  277. A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Åberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013)

    Article  Google Scholar 

  278. A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)

    Article  Google Scholar 

  279. L.L. Muldoon, M. Sàndor, K.E. Pinkston, E.A. Neuwelt, Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57, 785–796 (2005)

    Article  Google Scholar 

  280. M. Mahmoudi, A. Simchi, A. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 336, 510–518 (2009)

    Article  Google Scholar 

  281. F. Dilnawaz, S.K. Sahoo, Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discovery Today 20, 1256–1264 (2015)

    Article  Google Scholar 

  282. G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E.A. Bey, D.A. Boothman, J. Gao, Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3, 116–126 (2013)

    Article  Google Scholar 

  283. L. Zeng, Z. Shen, A. Wu, Magnetic nanomaterials for tumor targeting theranostics. Nanomater. Tumor Targ. Theranostics: A Proact. Clin. Perspect. (2016) 55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Zarepour, A., Zarrabi, A., Khosravi, A. (2017). SPIONs as Nano-Theranostics Agents. In: SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-3563-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3563-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3562-3

  • Online ISBN: 978-981-10-3563-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics