Skip to main content

Scaffolds Reinforced by Fibers or Tubes for Soft Tissue Repair

  • Chapter
  • First Online:
Tissue Repair
  • 634 Accesses

Abstract

Soft tissue is a dynamic and hierarchical organic structure, and its natural extracellular matrix (ECM) not only provides a microscopic mechanical environment but also regulates a variety of cellular function and exercise through the continuous interaction with the cells, mechanical transmission and the expression of chemical signals. ​Scaffolds in soft tissue engineering as an artificial extracellular matrix (ECM) should have the appropriate appearance and functions to provide material support for cell proliferation and survival. In nature, many soft tissues are usually mechanically reinforced by fibers to form a three-dimensional structure. Therefore, the application of reinforcing scaffolds has a number of potential advantages that can’t be ignored in soft tissue repair and regeneration. In the past few years, novel fibers or tubes reinforced scaffolds with controlled microstructures, mechanical properties and degradation rates have emerged in soft tissue engineering and been considered to be a very effective means for engineering materials development for soft tissue engineering or regenerative medicine. Studies have shown that fiber and tube reinforcements with their unique properties and functions play a key role in improving the biomechanics, biocompatibility, bioactivity, integration and degradation of synthetic scaffolds in soft tissue repair and regeneration. In this chapter, the properties, structures and applications of fiber- or tube- reinforced scaffolds in soft tissue engineering are reviewed in conjunction with recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Yang Y, Fan Y, Feng Q, Cui FZ, Watari F. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J Biomed Mater Res A. 2014;102(5):1580–94.

    Article  PubMed  CAS  Google Scholar 

  2. Bauer-Kreisel P, Goepferich A, Blunk T. Cell-delivery therapeutics for adipose tissue regeneration. Adv Drug Deliv Rev. 2010;62(7):798–813.

    Article  CAS  PubMed  Google Scholar 

  3. Xu H, Cai S, Sellers A, Yang Y. Intrinsically water-stable electrospun three-dimensional ultrafine fibrous soy protein scaffolds for soft tissue engineering using adipose derived mesenchymal stem cells. RSC Adv. 2014;4(30):15451–7.

    Article  CAS  Google Scholar 

  4. Xu H, Cai S, Sellers A, Yang Y. Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering. J Biotechnol. 2014;184:179–86.

    Article  CAS  PubMed  Google Scholar 

  5. Baker SC, Rohman G, Southgate J, Cameron NR. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials. 2009;30(7):1321–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bawolin NK, Zhang WJ, Chen XB. A brief review of the modelling of the time dependent mechanical properties of tissue engineering scaffolds. J Biomimetics Biomater Tissue Eng. 2010;6:19–33. Trans Tech Publications.

    Google Scholar 

  7. Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv. 2009;27(4):334–9.

    Article  CAS  PubMed  Google Scholar 

  8. Parrag IC, Woodhouse KA. Development of biodegradable polyurethane scaffolds using amino acid and dipeptide-based chain extenders for soft tissue engineering. J Biomater Sci Polym Ed. 2010;21(6–7):843–62.

    Article  CAS  PubMed  Google Scholar 

  9. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, … MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29(19):2907–14.

    Google Scholar 

  10. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26(18):3961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials. 2006;27(19):3631–8.

    CAS  PubMed  Google Scholar 

  12. Zhu Y, Dong Z, Wejinya UC, Jin S, Ye K. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J Biomech. 2011;44(13):2356–61.

    Article  PubMed  Google Scholar 

  13. Grover CN, Cameron RE, Best SM. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J Mech Behav Biomed Mater. 2012;10:62–74.

    Article  CAS  PubMed  Google Scholar 

  14. He C, Xu X, Zhang F, Cao L, Feng W, Wang H, Mo X. Fabrication of fibrinogen/P (LLA–CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. J Biomed Mater Res A. 2011;97(3):339–47.

    Article  PubMed  CAS  Google Scholar 

  15. Guan J, Fujimoto KL, Wagner WR. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering. Pharm Res. 2008;25(10):2400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pektok E, Nottelet B, Tille JC, Gurny R, Kalangos A, Moeller M, Walpoth BH. Degradation and healing characteristics of small-diameter poly (ε-Caprolactone) vascular grafts in the rat systemic arterial circulation CLINICAL PERSPECTIVE. Circulation. 2008;118(24):2563–70.

    Article  CAS  PubMed  Google Scholar 

  17. Fung YC. Biomechanics: mechanical properties of living tissues. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  18. Zhu J, Li J, Wang B, Zhang WJ, Zhou G, Cao Y, Liu W. The regulation of phenotype of cultured tenocytes by microgrooved surface structure. Biomaterials. 2010;31(27):6952–8.

    Article  CAS  PubMed  Google Scholar 

  19. De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L. Continuous fibre reinforced polymers as connective tissue replacement. Compos Sci Technol. 2004;64(6):861–71.

    Article  CAS  Google Scholar 

  20. Shau YW, Wang CL, Shieh JY, Hsu TC. Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound Med Biol. 1999;25(9):1377–88.

    Article  CAS  PubMed  Google Scholar 

  21. Vesely I. The role of elastin in aortic valve mechanics. J Biomech. 1997;31(2):115–23.

    Article  Google Scholar 

  22. Silver FH, Freeman JW, DeVore D. Viscoelastic properties of human skin and processed dermis. Skin Res Technol. 2001;7(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar VA, Caves JM, Haller CA, Dai E, Liu L, Grainger S, Chaikof EL. Collagen-based substrates with tunable strength for soft tissue engineering. Biomater Sci. 2013;1(11):1193–202.

    Article  CAS  Google Scholar 

  24. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.

    Article  CAS  PubMed  Google Scholar 

  25. Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in multiphasic osteochondral tissue engineering. Anat Rec. 2014;297(1):26–35.

    Article  CAS  Google Scholar 

  26. Darnell JE, Lodish H, Baltimore D. Molecular cell biology, vol. 2. New York: Scientific American Books; 1990.

    Google Scholar 

  27. Chand S. Review carbon fibers for composites. J Mater Sci. 2000;35(6):1303–13.

    Article  CAS  Google Scholar 

  28. Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64.

    Article  CAS  Google Scholar 

  29. Sathishkumar TP, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites–a review. J Reinf Plast Compos. 2014;33(13):1258–75.

    Article  CAS  Google Scholar 

  30. Li X, Feng Q, Jiao Y, Cui F. Collagen–based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polym Int. 2005;54(7):1034–40.

    Article  CAS  Google Scholar 

  31. Wang X, Yan Y, Yost MJ, Fann SA, Dong S, Li X. Nanomechanical characterization of micro/nanofiber reinforced type I collagens. J Biomed Mater Res A. 2007;83(1):130–5.

    Article  PubMed  CAS  Google Scholar 

  32. Li X, Feng Q. Porous poly-L-lactic acid scaffold reinforced by chitin fibers. Polym Bull. 2005;54(1):47–55.

    Article  CAS  Google Scholar 

  33. Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng A. 2008;15(1):115–26.

    Article  CAS  Google Scholar 

  34. McGann ME, Vahdati A, Wagner DR. Methods to assess in vitro wear of articular cartilage. Proc Inst Mech Eng H J Eng Med. 2012;226(8):612–22.

    Article  Google Scholar 

  35. Li L, Patil S, Steklov N, Bae W, Temple-Wong M, D’Lima DD, … Fregly BJ. Computational wear simulation of patellofemoral articular cartilage during in vitro testing. J Biomech. 2011;44(8):1507–13.

    Google Scholar 

  36. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology. 2000;214(1):259–66.

    Article  CAS  PubMed  Google Scholar 

  37. Burdick JA, Mauck RL, editors. Biomaterials for tissue engineering applications: a review of the past and future trends. Wien: Springer; 2010.

    Google Scholar 

  38. Brown TD, Pope DF, Hale JE, Buckwalter JA, Brand RA. Effects of osteochondral defect size on cartilage contact stress. J Orthop Res. 1991;9(4):559–67.

    Article  CAS  PubMed  Google Scholar 

  39. Li XM, Feng QL. Dynamic rheological behaviors of the bone scaffold reinforced by chitin fibres. Mat Sci Forum. 2005;475:2387–90.

    Article  Google Scholar 

  40. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG. Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng. 2001;7(6):767–80.

    Article  CAS  PubMed  Google Scholar 

  41. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  CAS  PubMed  Google Scholar 

  42. Sakata R, Iwakura T, Reddi AH. Regeneration of articular cartilage surface: morphogens, cells, and extracellular matrix scaffolds. Tissue Eng B Rev. 2015;21(5):461–73.

    Article  CAS  Google Scholar 

  43. Lee J, Choi YJ, Kim CH. Articular cartilage repair with tissue-engineered hyaline cartilage reconstructed in a chitosan-hyaluronic acid scaffold by costal chondrocytes. Tissue Eng Regen Med. 2011;8(5):446–53.

    Google Scholar 

  44. Singhal AR, Agrawal CM, Athanasiou KA. Salient degradation features of a 50: 50 PLA/PGA scaffold for tissue engineering. Tissue Eng. 1996;2(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson DE, Agrawal CM, Athanasiou K. The effects of dynamic compressive loading on biodegradable implants of 50–50% polylactic acid–polyglycolic acid. Tissue Eng. 1996;2(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  46. Agrawal A, Rahbar N, Calvert PD. Strong fiber-reinforced hydrogel. Acta Biomater. 2013;9(2):5313–8.

    Article  CAS  PubMed  Google Scholar 

  47. Visser J, Melchels FP, Jeon JE, Van Bussel EM, Kimpton LS, Byrne HM, … Malda J. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 2015;6:6933.

    Google Scholar 

  48. Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651–7.

    Article  CAS  PubMed  Google Scholar 

  49. Boere KW, Visser J, Seyednejad H, Rahimian S, Gawlitta D, Van Steenbergen MJ, … Malda J. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014;10(6):2602–11.

    Google Scholar 

  50. Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, Kelly TAN, … Vunjak-Novakovic G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27–36.

    Google Scholar 

  51. Seifzadeh A, Oguamanam DCD, Trutiak N, Hurtig M, Papini M. Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis. Comput Methods Prog Biomed. 2012;107(2):315–26.

    Article  CAS  Google Scholar 

  52. de Pascual-Teresa S, Moreno DA, García-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci. 2010;11(4):1679–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Szabo SM, Levy AR, Rao SR. Increased risk of cardiovascular and cerebrovascular diseases in individuals with ankylosing spondylitis: a population-based study. Arthritis Rheum. 2011;63(11):3294–304.

    Article  PubMed  Google Scholar 

  54. Blanco PJ, Queiroz RA, Feijoo RA. A computational approach to generate concurrent arterial networks in vascular territories. Int J Num Method Biomed Eng. 2013;29(5):601–14.

    Article  CAS  Google Scholar 

  55. Jurczuk K, Kretowski M, Eliat PA, Saint-Jalmes H, Bezy-Wendling J. In silico modeling of magnetic resonance flow imaging in complex vascular networks. IEEE Trans Med Imaging. 2014;33(11):2191–209.

    Article  PubMed  Google Scholar 

  56. Walles T, Giere B, Hofmann M, Schanz J, Hofmann F, Mertsching H, Macchiarini P. Experimental generation of a tissue-engineered functional and vascularized trachea. J Thorac Cardiovasc Surg. 2004;128(6):900–6.

    Article  PubMed  Google Scholar 

  57. Oh HH, Lu H, Kawazoe N, Chen G. Spatially guided angiogenesis by three-dimensional collagen scaffolds micropatterned with vascular endothelial growth factor. J Biomater Sci Polym Ed. 2012;23(17):2185–95.

    CAS  PubMed  Google Scholar 

  58. Zhang B, Montgomery M, Chamberlain MD, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater. 2016;15(6):669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pooyan P, Tannenbaum R, Garmestani H. Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater. 2012;7:50–9.

    Article  CAS  PubMed  Google Scholar 

  60. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–401.

    Article  CAS  PubMed  Google Scholar 

  61. Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small‐diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med. 2015;9(8):861–88.

    Article  CAS  PubMed  Google Scholar 

  62. Yao L, Liu J, Andreadis ST. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm Res. 2008;25(5):1212–21.

    Article  CAS  PubMed  Google Scholar 

  63. Liu JY, Swartz DD, Peng HF, Gugino SF, Russell JA, Andreadis ST. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res. 2007;75(3):618–28.

    Article  CAS  PubMed  Google Scholar 

  64. Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 2010;6(1):110–22.

    Article  CAS  PubMed  Google Scholar 

  65. Stekelenburg M, Rutten MC, Snoeckx LH, Baaijens FP. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng Part A. 2008;15(5):1081–9.

    Article  Google Scholar 

  66. Zhang L, Zhou J, Lu Q, Wei Y, Hu S. A novel small–diameter vascular graft: in vivo behavior of biodegradable three–layered tubular scaffolds. Biotechnol Bioeng. 2008;99(4):1007–15.

    Article  CAS  PubMed  Google Scholar 

  67. He W, Ma Z, Teo WE, Dong YX, Robless PA, Lim TC, Ramakrishna S. Tubular nanofiber scaffolds for tissue engineered small–diameter vascular grafts. J Biomed Mater Res A. 2009;90(1):205–16.

    Article  PubMed  CAS  Google Scholar 

  68. Gui L, Muto A, Chan SA, Breuer CK, Niklason LE. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng A. 2009;15(9):2665–76.

    Article  CAS  Google Scholar 

  69. Caves JM, Kumar VA, Martinez AW, Kim J, Ripberger CM, Haller CA, Chaikof EL. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials. 2010;31(27):7175–82.

    Article  CAS  PubMed  Google Scholar 

  70. Caves JM, Kumar VA, Wen J, Cui W, Martinez A, Apkarian R, … Chaikof EL. Fibrillogenesis in continuously spun synthetic collagen fiber. J Biomed Mater Res B Appl Biomater. 2010;93(1):24–38.

    Google Scholar 

  71. Caves JM, Kumar VA, Xu W, Naik N, Allen MG, Chaikof EL. Microcrimped collagen fiber-elastin composites. Adv Mater. 2010;22(18):2041–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites: a review. Bioresources. 2008;3(3):929–80.

    Google Scholar 

  73. Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6(2):612–26.

    Article  PubMed  CAS  Google Scholar 

  74. Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  75. Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci. 2001;26(9):1561–603.

    Article  CAS  Google Scholar 

  76. Allen RA, Wu W, Yao M, Dutta D, Duan X, Bachman TN, … Isenberg JS. Nerve regeneration and elastin formation within poly (glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35(1):165–73.

    Google Scholar 

  77. Wu W, Allen RA, Wang Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012;18(7):1148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li L, Terry CM, Shiu YTE, Cheung AK. Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int. 2008;74(10):1247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. De VS, Tille JC, Mugnai D, Mrowczynski W, Gurny R, Möller M, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33(1):38–47.

    Article  CAS  Google Scholar 

  80. Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34(12):1799–819.

    Article  PubMed  PubMed Central  Google Scholar 

  81. He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, … Deng Y. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules. 2014;15(2):618–27.

    Google Scholar 

  82. Liu Y, Zahedmanesh H, Lally C, Cahill PA, McGuinness GB. Compliance properties of a composite electrospun fibre–hydrogel blood vessel scaffold. Mater Lett. 2016;178:296–9.

    Article  CAS  Google Scholar 

  83. Balañá ME, Charreau HE, Leirós GJ. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells. 2015;7(4):711-27.

    Google Scholar 

  84. Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol. 2010;19(2):89–99.

    Article  PubMed  Google Scholar 

  85. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2009;7(43):229–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M, Horowitz M, Horsley V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146(5):761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Itoh M, Hiraoka Y, Kataoka K, Huh NH, Tabata Y, Okochi H. Novel collagen sponge reinforced with polyglycolic acid fiber produces robust, normal hair in murine hair reconstitution model. Tissue Eng. 2004;10(5–6):818–24.

    Article  CAS  PubMed  Google Scholar 

  88. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.

    CAS  PubMed  Google Scholar 

  89. Millar SE. Molecular mechanisms regulating hair follicle development. J Investig Dermatol. 2002;118(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  90. Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  91. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211(4486):1052–4.

    Article  CAS  PubMed  Google Scholar 

  92. Maruguchi T, Maruguchi Y, Suzuki S, Matsuda K, Toda KI, Isshiki N. A new skin equivalent: keratinocytes proliferated and differentiated on collagen sponge containing fibroblasts. Plast Reconstr Surg. 1994;93(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  93. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg. 2000;25(3):391–414.

    Article  CAS  Google Scholar 

  94. Cao J, Xiao Z, Jin W, Chen B, Meng D, Ding W, … Wang J. Induction of rat facial nerve regeneration by functional collagen scaffolds. Biomaterials. 2013;34(4):1302–10.

    Google Scholar 

  95. Hung V, Dellon AL. Reconstruction of a 4-cm human median nerve gap by including an autogenous nerve slice in a bioabsorbable nerve conduit: case report. J Hand Surg. 2008;33(3):313–5.

    Article  Google Scholar 

  96. Battiston B, Tos P, Conforti LG, Geuna S. Alternative techniques for peripheral nerve repair: conduits and end-to-side neurorrhaphy. Acta Neurochir Suppl. 2007;100:43–50.

    Article  CAS  PubMed  Google Scholar 

  97. Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly (DL-lactide-co-glycolide)(PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27(20):3800–9.

    Article  CAS  PubMed  Google Scholar 

  98. Lu MC, Huang YT, Lin JH, Yao CH, Lou CW, Tsai CC, Chen YS. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J Mater Sci Mater Med. 2009;20(5):1175–80.

    Article  CAS  PubMed  Google Scholar 

  99. Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006;6(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  100. Wang A, Ao Q, Wei Y, Gong K, Liu X, Zhao N, … Zhang X. Physical properties and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve regeneration. Biotechnol Lett. 2007;29(11):1697–702.

    Google Scholar 

  101. Kim YT, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bini TB, Gao S, Wang S, Lim A, Hai LB, Ramakrishna S. Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology. 2004;15(11):1459–64.

    Article  CAS  Google Scholar 

  103. Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng R Rep. 2007;57(1):1–27.

    Article  CAS  Google Scholar 

  104. Gao H, Yang Y, Zhang G, Sha Z, Shen Y. The use of fiber-reinforced scaffolds cocultured with Schwann cells and vascular endothelial cells to repair rabbit sciatic nerve defect with vascularization. Biomed Res Int. 2013;2013(4):362918.

    PubMed  PubMed Central  Google Scholar 

  105. Li X, Feng Q, Liu X, Dong W, Cui F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27(9):1917–23.

    Article  CAS  PubMed  Google Scholar 

  106. Kang M, Chen P, Jin HJ. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Curr Appl Phys. 2009;9(1):S95–7.

    Article  Google Scholar 

  107. Gupta P, Sharan S, Roy P, Lahiri D. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon. 2015;95:715–24.

    Article  CAS  Google Scholar 

  108. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, … Fan S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009;9(9):3137–41.

    Google Scholar 

  109. Saito R, Dresselhaus GDS. Physical properties of carbon nanotubes. London: Imperial College Press; 2003. p. 623–30.

    Google Scholar 

  110. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A. 2002;334(1):173–8.

    Article  Google Scholar 

  111. Boccaccini AR, Kaya C, Shaffer MSP. Electrophoretic deposition of carbon nanotubes (CNTs) and CNT/nanoparticle composites. In: Electrophoretic deposition of nanomaterials; 2012. p. 157–79.

    Google Scholar 

  112. Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899–912.

    Article  CAS  Google Scholar 

  113. Allaoui A, Bai S, Cheng HM, Bai JB. Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol. 2002;62(15):1993–8.

    Article  CAS  Google Scholar 

  114. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, … Khademhosseini A. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2011;6(1):362–72.

    Google Scholar 

  115. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B. 2005;109(10):4285–9.

    Article  CAS  PubMed  Google Scholar 

  116. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci. 2000;14(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  117. Butler DL, Dressler M, Awad H. Functional tissue engineering: assessment of function in tendon and ligament repair. In: Functional tissue engineering. New York: Springer; 2003. p. 1071–5.

    Google Scholar 

  118. Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006;39(1):1–20.

    Article  PubMed  Google Scholar 

  119. Pedowitz RA, O’Connor JJ, Akeson WH, editors. Daniel’s knee injuries: ligament and cartilage structure, function, injury, and repair. Philadelphia, PA: Lippincott Williams & Wilkins; 2003. p. 185–201.

    Google Scholar 

  120. Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26(36):7530–6.

    Article  CAS  PubMed  Google Scholar 

  121. Maffulli N, Ajis A, Longo UG, Denaro V. Chronic rupture of tendo Achillis. Foot Ankle Clin. 2007;12(4):583–96.

    Article  PubMed  Google Scholar 

  122. Maffulli N, Longo UG, Gougoulias N, Denaro V. Ipsilateral free semitendinosus tendon graft transfer for reconstruction of chronic tears of the Achilles tendon. BMC Musculoskelet Disord. 2008;9(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Exp Rev Med Devices. 2009;6(1):61–73.

    Article  Google Scholar 

  124. Wang JHC. Mechanobiology of tendon. J Biomech. 2006;39(9):1563–82.

    Article  PubMed  Google Scholar 

  125. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Annu Rev Biomed Eng. 2004;6:131–56.

    Article  CAS  PubMed  Google Scholar 

  126. Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy J Arthrosc Relat Surg. 2006;22(4):441–51.

    Article  Google Scholar 

  127. Shepherd JH, Ghose S, Kew SJ, Moavenian A, Best SM, Cameron RE. Effect of fiber crosslinking on collagen–fiber reinforced collagen–chondroitin-6-sulfate materials for regenerating load–bearing soft tissues. J Biomed Mat Res Part A. 2013;101(1):176–84.

    Article  CAS  Google Scholar 

  128. Webb WR, Dale TP, Lomas AJ, Zeng G, Wimpenny I, El Haj AJ, … Chen GQ. The application of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials. 2013;34(28):6683–94.

    Google Scholar 

  129. Yang C, Deng G, Chen W, Ye X, Mo X. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids Surf B: Biointerfaces. 2014;122:270–6.

    Article  CAS  PubMed  Google Scholar 

  130. Hakimi O, Mouthuy PA, Zargar N, Lostis E, Morrey M, Carr A. A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta Biomater. 2015;26:124–35.

    Article  CAS  PubMed  Google Scholar 

  131. Hakimi O, Murphy R, Stachewicz U, Hislop S, Carr AJ. An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater. 2012;24:344–57.

    Article  CAS  PubMed  Google Scholar 

  132. Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, Sullivan SD. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656–64.

    Article  CAS  PubMed  Google Scholar 

  133. Raj PP. Intervertebral disc: anatomy–physiology–pathophysiology–treatment. Pain Pract. 2008;8(1):18–44.

    Article  PubMed  Google Scholar 

  134. Strange DG, Tonsomboon K, Oyen ML. Mechanical behaviour of electrospun fibre-reinforced hydrogels. J Mater Sci Mater Med. 2014;25(3):681–90.

    Article  CAS  PubMed  Google Scholar 

  135. Hudson KD, Alimi M, Grunert P, Härtl R, Bonassar LJ. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol. 2013;24(5):872–9.

    Article  CAS  PubMed  Google Scholar 

  136. Kandel R, Roberts S, Urban JP. Tissue engineering and the intervertebral disc: the challenges. Eur Spine J. 2008;17(4):480–91.

    Article  PubMed  PubMed Central  Google Scholar 

  137. O’Halloran DM, Pandit AS. Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng. 2007;13(8):1927–54.

    Article  PubMed  Google Scholar 

  138. Koepsell L, Zhang L, Neufeld D, Hao F, Deng Y. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol Biosci. 2011;11(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  139. Koepsell L, Zhang L, Neufeld D, Fong H, Deng Y. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol Biosci. 2011;11(3):391–9.

    Article  CAS  PubMed  Google Scholar 

  140. Nathan AS, Baker BM, Nerurkar NL, Mauck RL. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 2011;7(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  141. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4):263–73.

    Article  CAS  PubMed  Google Scholar 

  142. Ambrosio L, Netti PA, Iannace S, Huang SJ, Nicolais L. Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med. 1996;7(5):251–4.

    Article  CAS  Google Scholar 

  143. Nerurkar NL, Baker BM, Sen S, Wible EE, Elliott DM, Mauck RL. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat Mater. 2009;8(12):986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nerurkar NL, Sen S, Huang AH, Elliott DM, Mauck RL. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine. 2010;35(8):867–73.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Thorvaldsson A, Silva-Correia J, Oliveira JM, Reis RL, Gatenholm P, Walkenström P. Development of nanofiber–reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. J Appl Polym Sci. 2013;128(2):1158–63.

    Article  CAS  Google Scholar 

  146. Xu W, Ma J, Jabbari E. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater. 2010;6(6):1992–2002.

    Article  CAS  PubMed  Google Scholar 

  147. Kahn S A, Beers R J, Lentz C W. Use of acellular dermal replacement in reconstruction of nonhealing lower extremity wounds. Journal of Burn Care & Research Official Publication of the American Burn Association. 2011;32(1):124-8.

    Google Scholar 

  148. Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng B Rev. 2008;14(1):105–18.

    Article  CAS  Google Scholar 

  149. Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55(12):1595–611.

    Article  CAS  PubMed  Google Scholar 

  150. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS. Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 2012;8(10):3714–22.

    Article  CAS  PubMed  Google Scholar 

  151. Dikovsky D, Bianco-Peled H, Seliktar D. Defining the role of matrix compliance and proteolysis in three-dimensional cell spreading and remodeling. Biophys J. 2008;94(7):2914–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  153. Albanna MZ, Bou-Akl TH, Walters HL, Matthew HW. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater. 2012;5(1):171–80.

    Article  CAS  PubMed  Google Scholar 

  154. McCullen SD, Haslauer CM, Loboa EG. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J Mater Chem. 2010;20(40):8776–88.

    Article  CAS  Google Scholar 

  155. Shepherd JH, Ghose S, Kew SJ, Moavenian A, Best SM, Cameron RE. Effect of fiber crosslinking on collagen–fiber reinforced collagen–chondroitin–6–sulfate materials for regenerating load–bearing soft tissues. J Biomed Mater Res A. 2013;101(1):176–84.

    Article  CAS  PubMed  Google Scholar 

  156. Han F, Liu S, Liu X, Pei Y, Bai S, Zhao H, Zhu H. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomater. 2014;10(2):921–30.

    Article  CAS  PubMed  Google Scholar 

  157. Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F. Toughening of electrospun poly (L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci. 2015;50(3):1435–45.

    Article  CAS  Google Scholar 

  158. Ionita M, Pandele MA, Iovu H. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym. 2013;94(1):339–44.

    Article  CAS  PubMed  Google Scholar 

  159. Liu M, Zhang Y, Wu C, Xiong S, Zhou C. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol. 2012;51(4):566–75.

    Article  CAS  PubMed  Google Scholar 

  160. Panda A, Vanathi M, Kumar A, Dash Y, Priya S. Corneal graft rejection. Surv Ophthalmol. 2007;52(4):375–96.

    Article  PubMed  Google Scholar 

  161. Polisetti N, Islam MM, Griffith M. The artificial Cornea.Corneal Regenerative Medicine. Humana Press. 2013:45-52.

    Google Scholar 

  162. Feder RS, Kshettry P. Noninflammatory ectatic disorders. Cornea. 2005;1:955–74.

    Google Scholar 

  163. Snibson GR. Collagen cross-linking: a new treatment paradigm in corneal disease - a review. Clin Experiment Ophthalmol. 2010;38(2):141–53.

    Article  PubMed  Google Scholar 

  164. Huang YX, Li QH. An active artificial cornea with the function of inducing new corneal tissue generation in vivo-a new approach to corneal tissue engineering. Biomed Mater. 2007;2(3):S121–5.

    Article  CAS  PubMed  Google Scholar 

  165. Chandra SR. Global blindness: VISION 2020: the right to sight. Arch Ophthalmol. 2008;126(10):1457.

    Article  PubMed  Google Scholar 

  166. Ionescu AM, Alaminos M, de la Cruz Cardona J, Durán JDDGL, González-Andrades M, Ghinea R, del Mar Pérez M. Investigating a novel nanostructured fibrin–agarose biomaterial for human cornea tissue engineering: Rheological properties. J Mech Behav Biomed Mater. 2011;4(8):1963–73.

    Article  CAS  PubMed  Google Scholar 

  167. Ruberti JW, Zieske JD. Prelude to corneal tissue engineering–gaining control of collagen organization. Prog Retin Eye Res. 2008;27(5):549–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu Z, Ji J, Zhang J, Huang C, Meng Z, Qiu W, … Wang W. Corneal reinforcement using an acellular dermal matrix for an analysis of biocompatibility, mechanical properties, and transparency. Acta Biomater. 2012;8(9):3326–32.

    Google Scholar 

  169. Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27(26):4608–17.

    Article  CAS  PubMed  Google Scholar 

  170. Meek KM, Boote C. The organization of collagen in the corneal stroma. Exp Eye Res. 2004;78(3):503–12.

    Article  CAS  PubMed  Google Scholar 

  171. Connon CJ, Meek KM, Kinoshita S, Quantock AJ. Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea. Exp Eye Res. 2004;78(5):909–15.

    Article  CAS  PubMed  Google Scholar 

  172. Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91(3):326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wu J, Du Y, Watkins SC, Funderburgh JL, Wagner WR. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials. 2012;33(5):1343–52.

    Article  CAS  PubMed  Google Scholar 

  174. Wilson SL, Wimpenny I, Ahearne M, Rauz S, El Haj AJ, Yang Y. Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model. Adv Funct Mater. 2012;22(17):3641–9.

    Article  CAS  Google Scholar 

  175. Cartwright NEK, Tyrer JR, Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci. 2011;52(7):4324–9.

    Article  Google Scholar 

  176. Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008;86(5):783–90.

    Article  CAS  PubMed  Google Scholar 

  177. Long K, Liu Y, Li W, Wang L, Liu S, Wang Y, Ren L. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res A. 2015;103(3):1159–68.

    Article  PubMed  CAS  Google Scholar 

  178. Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater. 2013;9(8):7796–805.

    Article  CAS  PubMed  Google Scholar 

  179. Saeidi N, Karmelek KP, Paten JA, Zareian R, DiMasi E, Ruberti JW. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures. Biomaterials. 2012;33(30):7366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tonsomboon K, Strange DGT, Oyen ML. Gelatin nanofiber-reinforced alginate gel scaffolds for corneal tissue engineering. In: Engineering in medicine and biology society (EMBC). IEEE; 2013. p. 6671–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqing Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pei, B., Wang, W., Li, X. (2017). Scaffolds Reinforced by Fibers or Tubes for Soft Tissue Repair. In: Li, X. (eds) Tissue Repair . Springer, Singapore. https://doi.org/10.1007/978-981-10-3554-8_8

Download citation

Publish with us

Policies and ethics