Skip to main content

Scaffolds Reinforced by Fibers or Tubes for Hard Tissue Repair

  • Chapter
  • First Online:
Tissue Repair
  • 608 Accesses

Abstract

Formed by biological mineralization, hard tissues not only play a supporting role in vivo, but also contribute to the protection of internal organs. Currently, hard tissue defects have already become a type of common disease owing to fracture, trauma, pathological biomineralization or degeneration, etc. It has been well recognized that scaffolds reinforced by fibers or tubes can overcome the shortages of traditional tissue grafts to repair hard tissues. However, to achieve satisfactory scaffolds, their composition, physicochemical properties, biodegradability, biocompatibility and bioactivity should be comprehensively studied. In this chapter, we mainly introduce those properties and their influential factors of scaffolds reinforced by fibers or tubes, mainly focusing on special design and fabrication of novel satisfactory scaffolds reinforced by fibers or tubes for hard tissue repair, and how the addition of fibers or tubes affects the special functions in vitro and in vivo, which suggests that the reinforcement using fibers or tubes can enhance significantly hard tissue repair or regeneration efficacy, and should be one promising means to develop new high-performanced scaffolds for hard tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yi JY, Njoroge DM, Sila DN, Kinyanjui PK, Christiaens S, Bi JF, Hendrickx ME. Detailed analysis of seed coat and cotyledon reveals molecular understanding of the hard-to-cook defect of common beans. Food Chem. 2016;210:481–90.

    Article  CAS  PubMed  Google Scholar 

  2. Desai MJ, Hutton WC, Jarrett CD. Arthroscopic repair of triangular fibrocartilage tears: a biomechanical comparison of a knotless suture anchor and the traditional outside-in repairs. J Hand Surg [Am]. 2013;38A:2193–7.

    Article  Google Scholar 

  3. Koppes RA, Park S, Hood T, Jia XT, Poorheravi NA, Achyuta AH, Fink Y, Anikeeva P. Thermally drawn fibers as nerve guidance scaffolds. Biomaterials. 2016;81:27–35.

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki N, Takakuwa J, Yamada H, Mori R. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers. Am J Vet Res. 2010;71:483–6.

    Article  PubMed  Google Scholar 

  5. Cole BJ, ElAttrache NS, Anbari A. Arthroscopic rotator cuff repairs: an anatomic and biomechanical rationale for different suture-anchor repair configurations. Arthroscopy. 2007;23:662–9.

    Article  PubMed  Google Scholar 

  6. Farnebo S, Woon CY, Kim M, Pham H, Chang J. Reconstruction of the tendon-bone insertion with decellularized tendon-bone composite grafts: comparison with conventional repair. J Hand Surg [Am]. 2014;39:65–74.

    Article  Google Scholar 

  7. Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscus tears extending into the avascular zone with or without anterior cruciate ligament reconstruction in patients 40 years of age and older. Arthroscopy. 2000;16:822–9.

    Article  CAS  PubMed  Google Scholar 

  8. Li DQ, Li M, Liu PL, Zhang YK, Lu JX, Li JM. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. Int Orthop. 2014;38:2399–406.

    Article  PubMed  Google Scholar 

  9. Mozdzen LC, Rodgers R, Banks JM, Bailey RC, Harley BAC. Increasing the strength and bioactivity of collagen scaffolds usingcustomizable arrays of 3D-printed polymer fibers. Acta Biomater. 2016;33:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aya R, Ishiko T, Noda K, Yamawaki S, Sakamoto Y, Tomihata K, Katayama Y, Yoshikawa K, Kubota H, Nakamura T, Naitoh M, Suzuki S. Regeneration of elastic fibers by three-dimensional culture on acollagen scaffold and the addition of latent TGF-b binding protein 4 to improve elastic matrix deposition. Biomaterials. 2015;72:29–37.

    Article  CAS  PubMed  Google Scholar 

  11. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141–50.

    Article  CAS  PubMed  Google Scholar 

  13. Akin FA, Zreiqat H, Jordan S, Wijesundara MBJ, Hanley L. Hanley preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants. J Biomed Mater Res. 2001;57:588–96.

    Article  CAS  PubMed  Google Scholar 

  14. van Tienen TG, Heijkants RGJC, Buma P, de Groot JH, Pennings AJ, Veth RPH. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2002;23:1731–8.

    Article  PubMed  Google Scholar 

  15. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900.

    Article  CAS  PubMed  Google Scholar 

  16. Chen CS, Mrksich M, Huang S, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ma T, Li Y, Yang ST, Kniss DA. Tissue engineering human placenta trophoblast cells in 3-D fibrous matrix: spatial effects on cell proliferation and function. Biotechnol Prog. 1999;15:715–24.

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed. 2001;12:979–93.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.

    Article  CAS  PubMed  Google Scholar 

  20. Khan AS, Azam MT, Khan M, Mian SA, Rehman IU. An update on glass fiber dental restorative composites: a systematic review. Mater Sci Eng C Mater Biol Appl. 2015;47:26–39.

    Article  CAS  PubMed  Google Scholar 

  21. de Araujo MD, Miranda RBD, Fredericci C, Yoshimura HN, Cesar PF. Effect of fiber addition on slowcrack growth of a dental porcelain. J Mech Behav Biomed Mater. 2015;44:85–95.

    Article  PubMed  CAS  Google Scholar 

  22. Wang T, Tsoi JKH, Matinlinna JP. A novelzirconia fibre-reinforced resincomposite for dentaluse. J Mech Behav Biomed Mater. 2016;53:151–60.

    Article  CAS  PubMed  Google Scholar 

  23. Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. Tissue Eng Part B Rev. 2013;19:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu MC, Huang YT, Lin JH, Yao CH, Lou CW, Tsai CC, Chen SY. Evaluation of a multilayer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J Mater Sci Mater Med. 2009;20:1175–80.

    Article  CAS  PubMed  Google Scholar 

  25. Moutos FT, Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(e-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng A. 2010;16:1291–301.

    Article  CAS  Google Scholar 

  26. Li XM, Yang Y, Fan YB, Feng QL, Cui FZ, Watari F. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J Biomed Mater Res A. 2014;102:1580–94.

    Article  PubMed  CAS  Google Scholar 

  27. Leeuwenburgh SCG, Jo J, Wang HA, Yamamoto M, Jansen JA, Tabata Y. Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration. Biomacromolecules. 2010;11:2653–9.

    Article  CAS  PubMed  Google Scholar 

  28. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256–74.

    Article  CAS  PubMed  Google Scholar 

  29. Shi YN, Han H, Quan HY, Zang YJ, Wang N, Ren GZ, Xing M, Wu QL. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: preparation and characterizations. Mater Sci Eng C. 2014;43:102–8.

    Article  CAS  Google Scholar 

  30. Wang HA, Boerman OC, Sariibrahimoglu K, Li YB, Jansen JA, Leeuwenburgh SCG. Comparison of micro-vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: bone morphogenetic protein-2 and alkaline phosphatase. Biomaterials. 2012;33:8695–703.

    Article  CAS  PubMed  Google Scholar 

  31. Sabbagh J, Vreven J, Leloup G. Dynamic and static moduli ofelasticity of resin-based materials. Dent Mater. 2002;18:64–71.

    Article  CAS  PubMed  Google Scholar 

  32. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Mater Res. 2002;60:613–21.

    Article  CAS  Google Scholar 

  33. Li XM, Feng QL. Dynamic rheological behaviors of the bone scaffold reinforced by chitinfibres. Mater Sci Forum. 2005;475-479:2387–90.

    Article  CAS  Google Scholar 

  34. Li XM, Feng QL, Cui FZ. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Mater Sci Eng C. 2006;26:716–20.

    Article  CAS  Google Scholar 

  35. Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev. 2009;15:17–27.

    Article  CAS  PubMed  Google Scholar 

  36. Park SJ, Lee BK, Na MH, Kim DS. Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Acta Biomater. 2013;9:7719–26.

    Article  CAS  PubMed  Google Scholar 

  37. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  CAS  PubMed  Google Scholar 

  38. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    Article  CAS  PubMed  Google Scholar 

  39. Vozzi G, Previti A, De Rossi D, Ahluwalia A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8:1089–98.

    Article  CAS  PubMed  Google Scholar 

  40. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739–51.

    Article  CAS  PubMed  Google Scholar 

  41. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–94.

    Article  CAS  PubMed  Google Scholar 

  42. Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed. 1996;8:63–75.

    Article  CAS  PubMed  Google Scholar 

  43. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials. 2002;23:4437–47.

    Article  CAS  PubMed  Google Scholar 

  44. Woodfield TBF, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 2004;25:4149–61.

    Article  CAS  PubMed  Google Scholar 

  45. Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 2006;27:974–85.

    Article  CAS  PubMed  Google Scholar 

  46. Kenawy ER, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, Wnek GE. Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials. 2003;24:907–13.

    Article  CAS  Google Scholar 

  47. Wintermantel E, Mayer J, Blum KL, Eckert P, Lüscher MM. Tissue engineering scaffolds using superstructures. Biomaterials. 1996;17:83–91.

    Article  CAS  PubMed  Google Scholar 

  48. Ge ZG, Yang F, Goh JCH, Ramakrishna S, Lee EH. Biomaterials and scaffolds for ligament tissue engineering. J Mater Res A. 2006;77A:639–52.

    Article  CAS  Google Scholar 

  49. Lee JH, Park JH, El-Fiqi A, Kim JH, Yun YR, Jang JH, Han CM, Lee EJ, Kim HW. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Acta Biomater. 2014;10:2750–61.

    Article  CAS  PubMed  Google Scholar 

  50. Horner CB, Ico G, Johnson J, Zhao Y, Nam J. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels. J Mech Behav Biomed Mater. 2016;59:207–19.

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Cheng F, Grenman H, Spoljaric S, Seppala J, Eriksson JE, Willfor S, Xu CL. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr Polym. 2016;148:259–71.

    Article  CAS  PubMed  Google Scholar 

  52. da Silva LPN, Issa JPM, Bel EAD. Action of nitric oxide on healthy and inflamed human dental pulp tissue. Micron. 2008;39:797–801.

    Article  PubMed  CAS  Google Scholar 

  53. Food, Drug Administration (FDA). Dental composites-premarket notification. US Department of Health and Human Services. 1998.

    Google Scholar 

  54. Tezvergil A, Lassila LVJ, Vallittu PK. The effect of fiber orientation on the thermal expansion coefficient of fiber reinforced composites. Dent Mater. 2003;19:471–7.

    Article  CAS  PubMed  Google Scholar 

  55. Budai Z, Sulyok Z, Vargha V. Glass-fibre reinforced composite materials based on unsaturated polyester resins. J Therm Anal Calorim. 2012;109:1533–44.

    Article  CAS  Google Scholar 

  56. Zhang M, Matinlinna JP. E-glass fiber reinforced composites in dental applications. Silicon. 2012;4:73–8.

    Article  CAS  Google Scholar 

  57. Zhu HY, Li DH, Zhang DX, Wu BC, Chen YY. Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates. Trans Nonferrous Metals Soc China. 2009;19:s470–5.

    Article  CAS  Google Scholar 

  58. da Silva Pinto CE, Carbajal A, Wypych F, Ramos LP, Satyanarayana KG. Studies of the effect of molding pressure and incorporation of sugarcane bagasse fibers on the structure and properties of poly (hydroxy butyrate). Compos A: Appl Sci Manuf. 2009;40:573–82.

    Article  CAS  Google Scholar 

  59. Moriwaki T. Mechanical property enhancement of glass fibre reinforced polyamide composite made by direct injection. Composites. 1996;27:379–84.

    Article  Google Scholar 

  60. Leenslag JW, Pennings AJ. High-strength poly(L-lactide) fibres by a dry-spinning/hot-drawing process. Polymer. 1987;28:92–4.

    Article  CAS  Google Scholar 

  61. Nazhat SN, Kellomaki M, Tormala P, Tanner KE, Bonfield W. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J Biomed Mater Res. 2001;58:335–43.

    Article  CAS  PubMed  Google Scholar 

  62. Kulkova J, Moritz N, Huhtinen H, Mattila R, Donati I, Marsich E, et al. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser. Med Eng Phys. 2016;38:664–70.

    Article  PubMed  Google Scholar 

  63. Abdal-haya A, Sheikh FA, Lim JK. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B: Biointerfaces. 2013;102:635–43.

    Article  CAS  Google Scholar 

  64. Abdal-Hay A, Hasan A, Yu-Kyoung LMH, Hamdy AS, Khalil KA. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Mater Sci Eng C Mater Biol Appl. 2016;58:1232–41.

    Article  CAS  PubMed  Google Scholar 

  65. Erkmen E, Meric G, Kurt A, Tunc Y, Eser A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: a 3D FEA study. J Mech Behav Biomed Mater. 2011;4:107–16.

    Article  PubMed  Google Scholar 

  66. Boudeau N, Liksonov D, Barriere T, Maslov L, Gelin JC. Composite based on polyetheretherketone reinforced with carbon fibres, an alternative to conventional materials for femoral implant: manufacturing process and resulting structural behaviour. Mater Des. 2012;40:148–56.

    Article  CAS  Google Scholar 

  67. Rameshbabu AP, Mohanty S, Bankoti K, Ghosh P, Dhara S. Effect of alumina, silk and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin. Compos Part B. 2015;70:238–46.

    Article  CAS  Google Scholar 

  68. Silva RM, Santos PHN, Souza LB, Dumont VC, Soares JA, Santos MH. Effects of cellulose fibers on the physical and chemical properties of glass ionomer dental restorative materials. Mater Res Bull. 2013;48:118–26.

    Article  CAS  Google Scholar 

  69. Anderson JB, Marcus W, Estevam AB, Paulo GC. Physicochemical characterization of three fiber-reinforced epoxide-basedcomposites for dental applications. Mater Sci Eng C. 2016;69:905–13.

    Article  CAS  Google Scholar 

  70. Qidwai M, Sheraz MA, Ahmed S, Alkhuraif AA, Ur Rehman I. Preparation and characterization of bioactive composites and fibers for dental applications. Dent Mater. 2014;30:E253–63.

    Google Scholar 

  71. Abdulmunem M, Dabbagh A, Naderi S, Zadeh MT, Halim NFA, Khan S, et al. Evaluation of the effect of dental cements on fracture resistance and fracture mode of teeth restored with various dental posts: a finite element analysis. J Eur Ceram Soc. 2016;36:2213–21.

    Article  CAS  Google Scholar 

  72. Ereifej N, Silikas N, Watts DC. Initial versus final fracture of metal-free crowns, analyzed via acoustic emission. Dent Mater. 2008;24:1289–95.

    Article  CAS  PubMed  Google Scholar 

  73. Chen YC, Li HY, Fok A. In vitro validation of a shape-optimized fiber-reinforced dental bridge. Dent Mater. 2011;27:1229–37.

    Article  CAS  PubMed  Google Scholar 

  74. Basaran EG, Ayna E, Vallittu PK, Lassila LVJ. Load bearing capacity of fiber-reinforced and unreinforced composite resin CAD/CAMfabricated fixed dental prostheses. J Prosthet Dent. 2013;109:88–94.

    Article  CAS  PubMed  Google Scholar 

  75. Sheikhhassani R, Anvari P, Taei S, Sheikhhassani Y. Potential use of a polycarbonate-urethane matrix reinforced with polyethylene fibers for shock-absorbing dental implants. Med Hypotheses. 2015;85:241–4.

    Article  CAS  PubMed  Google Scholar 

  76. Lee YH, Bhattarai G, Park IS, Kim GR, Kim GE, Lee MH, Yi HK. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials. 2013;34:10199–208.

    Article  CAS  PubMed  Google Scholar 

  77. Lee YH, Lee NH, Bhattarai G, Oh YT, Yu MK, Yoo ID, Jhee EC, Yi HK. Enhancement of osteoblast biocompatibility on titanium surface with terrein treatment. Cell Biochem Funct. 2010;28:678–85.

    Article  PubMed  CAS  Google Scholar 

  78. Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W, Zhang ZY. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials. 2013;34:2234–43.

    Article  CAS  PubMed  Google Scholar 

  79. Dafara MO, Grol MW, Canhama PB, Dixon J, Rizkalla AS. Reinforcement of flowable dental composites withtitanium dioxide nanotubes. Dent Mater. 2016;32:817–26.

    Article  CAS  Google Scholar 

  80. Chen Q, Zhao Y, Wu WD, Xu T, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent Mater. 2012;28:1071–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhao B, Hu H, Mandal SK, Haddon RC. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater. 2005;17:3235–41.

    Article  CAS  Google Scholar 

  82. Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng. 2013;41:904–16.

    Article  PubMed  Google Scholar 

  83. Mohamed E, Taheri M, Mehrjoo M, Mazaheri M, Zahedi AM, Shokrgozar MA, Golestani-Fard F. In vitro biocompatibility and ageing of 3Y-TZP/CNTs composites. Ceram Int. 2015;41:12773–81.

    Article  CAS  Google Scholar 

  84. Nejatidanesh F, Momeni G, Savabi O. Flexural strength of interim resin materials for fixed prosthodontics. J Prosthodont. 2009;18:507–11.

    Article  PubMed  Google Scholar 

  85. Barry DH, Jeffrey AH. Fiber-reinforced interim fixed dental prostheses: a clinical protocol. J Prosthet Dent. 2016;116:496–500.

    Article  Google Scholar 

  86. Kumbuloglu O, Ozcan M. Clinical survival of indirect, anterior 3-unit surface-retained fibre-reinforced composite fixed dental prosthesis: up to 7.5-years follow-up. J Dent. 2015;43:656–63.

    Article  CAS  PubMed  Google Scholar 

  87. Mendes RM, Silva GA, Caliari MV, Silva EE, Ladeira LO, Ferreira AJ. Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci. 2010;87:215–22.

    Article  CAS  PubMed  Google Scholar 

  88. Sa MA, Andrade VB, Mendes RM, Caliari MV, Ladeira LO, Silva EE, Silva GAB, Correa JD, Ferreira AJ. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. 2013;19:484–93.

    Article  CAS  PubMed  Google Scholar 

  89. Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym. 2016;144:419–27.

    Article  CAS  PubMed  Google Scholar 

  90. Li XM, Feng QL, Wang WJ, Cui FZ. Chemical characteristics and Cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2006;77B:219–26.

    Google Scholar 

  91. Li XM, Liu XH, Dong W, Feng QL, Cui FZ, Uo M, et al. In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers. J Biomed Mater Res B Appl Biomater. 2009;90B:503–9.

    Article  CAS  Google Scholar 

  92. Guarino V, Causa F, Taddei P, di Foggia M, Ciapetti G, Martini D, et al. Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials. 2008;29:3662–70.

    Article  CAS  PubMed  Google Scholar 

  93. Lipner J, Liu W, Liu Y, Boyle J, Genin GM, Xia Y, Thomopoulos S. The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair. J Mech Behav Biomed Mater. 2014;40:59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32:65–74.

    Article  CAS  PubMed  Google Scholar 

  95. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometrescale. Acta Biomater. 2010;6:3824–46.

    Article  CAS  PubMed  Google Scholar 

  96. Mallick KK, Cox SC. Biomaterial scaffolds for tissue engineering. Front Biosci. 2013;5:341–60.

    Article  Google Scholar 

  97. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glassceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  PubMed  Google Scholar 

  98. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–55.

    Article  CAS  PubMed  Google Scholar 

  99. Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2011;9:401–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wu CT, Zhou YH, Xu MC, Han PP, Chen L, Chang J, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.

    Article  CAS  PubMed  Google Scholar 

  101. Sharifi E, Azami M, Kajbafzadeh AM, Moztarzadeh F, Majidi Faridi R, Shamousi A, Karimi R, Ai J. Preparation of a biomimetic composite scaffold fromgelatin/collagen and bioactive glass fibers for bone tissue engineering. Mater Sci Eng C: Mater Biol Appl. 2016;59:533–41.

    Article  CAS  Google Scholar 

  102. O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–86.

    Article  PubMed  CAS  Google Scholar 

  103. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  CAS  Google Scholar 

  104. O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  PubMed  CAS  Google Scholar 

  105. Tierney CM, Jaasma MJ, O'Brien FJ. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations. J Biomed Mater Res A. 2009;91A:92–101.

    Article  CAS  Google Scholar 

  106. Liu LS, Thompson AY, Heidaran MA, Poser JW, Spiro RC. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials. 1999;20:1097–108.

    Article  CAS  PubMed  Google Scholar 

  107. Li ZZ, Wen JH, Jia WJ, Ding S, Xia XH, Zhou CR, Huang YD. Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair. Chem Res Chin Univ. 2016;32:406–13.

    Article  CAS  Google Scholar 

  108. Mashak A. In vitro drug release from silicone rubber-polyacrylamide composite. Silicon Chem. 2008;3:295–301.

    Article  CAS  Google Scholar 

  109. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  110. Beynnon BD, Fleming BC. Anterior cruciate ligament strain invivo: a review of previous work. J Biomech. 1998;31:519–25.

    Article  CAS  PubMed  Google Scholar 

  111. Pennisi E. Tending tender tendons. Science. 2002;295:1011–11.

    Article  CAS  PubMed  Google Scholar 

  112. Albright JC, Carpenter JE, Graf BK, et al. Knee and leg: soft-tissue trauma. In: Beaty JH, editor. Orthopaedic knowledge, update 6. Rosemont: American Academy of Orthopedic Surgery; 1999. p. 78.

    Google Scholar 

  113. Makhmalbaf H. ACL deficient knee, an approach to patient selection and reconstruction. Arch Bone Jt Surg. 2013;1:1457–9.

    Google Scholar 

  114. Moglo KE, Shirazi-Adl A. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee. 2003;10:265–76.

    Article  CAS  PubMed  Google Scholar 

  115. Hehl G, Strecker W, Richter M, Kiefer H, Wissmeyer T. Clinical experience with PDS II augmentation for operative treatment of acute proximal ACL ruptures-2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 1999;7:102–6.

    Article  CAS  PubMed  Google Scholar 

  116. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23:4131–441.

    Article  CAS  PubMed  Google Scholar 

  117. Majima T, Lo IKY, Randle JA, Marchuk LL, Shrive NG, Frank CB, et al. ACL transection influences mRNA levels for collagen type I and TNF-α in MCL scar. J Orthop Res. 2002;20:520–5.

    Article  CAS  PubMed  Google Scholar 

  118. Freeman JW, Woods MD, Cromer DA, Ekwueme EC, Andric T, Atiemo EA, et al. Evaluation of a hydrogel-fiber composite for ACL tissue engineering. J Biomech. 2011;44:694–9.

    Article  PubMed  Google Scholar 

  119. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligamentbone graft. Biomaterials. 2005;26:7339–49.

    Article  CAS  PubMed  Google Scholar 

  120. Brammer KS, Choi C, Frandsen CJ, Oh S, Johnston G, Jin S. Comparative cell behavior on carbon-coated TiO2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells. Acta Biomater. 2011;7:2697–703.

    Article  CAS  PubMed  Google Scholar 

  121. Wan YZ, Liu P, Zhang C, Yang ZW, Xiong GY, Zheng XR, Luo HL. Synthesis of a three-dimensional network-structured scaffold built of silica nanotubes for potential bone tissue engineering applications. J Alloys Compd. 2015;647:711–9.

    Article  CAS  Google Scholar 

  122. Hirota M, Hayakawa T, Yoshinari M, Ametani A, Shima T, Monden Y, et al. Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. Int J Oral Maxillofac Surg. 2012;41:1304–9.

    Article  PubMed  Google Scholar 

  123. Sahoo S, Toh SL, Goh JCH. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31:2990–8.

    Article  CAS  PubMed  Google Scholar 

  124. Zhu Y, Wang XH, Ma J, Feng QL, Cui FZ. In vitro cytocompatibility of phosphorylated chitosan (P-chitosan) with osteoblasts. J Bioact Compat Polym. 2003;18:375–90.

    Article  CAS  Google Scholar 

  125. Wang XH, Feng QL, Cui FZ, Ma JB. The effects of S-chitosan onthe physical properties of calcium phosphate cements. J Bioact Compat polym. 2003;18:45–57.

    Article  Google Scholar 

  126. Chen SH, Tang T, Liu Z, Lau PY, Xie XH, Wang XL, et al. Study on osteointegrative properties of a functional gradient tumor bone repair materials in ulna bone defect model of rabbits. Bone. 2010;47:S432–32.

    Google Scholar 

  127. Li XM, Feng QL, Liu XH, Dong W, Cui FZ. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27:1917–23.

    Google Scholar 

  128. Li XM, Wang Z, Zhao TX, Yu B, Fan YB, Feng QL, Cui FZ, Watari F. A novel method to in vitro evaluate biocompatibility of nanoscaled scaffolds. J Biomed Mater Res A. 2016;109:2117–25.

    Article  CAS  Google Scholar 

  129. Srivastava VK, Rastogi A, Goel SC, Chukowry SK. Implantation of tricalcium phosphate-polyvinyl alcohol filled carbon fibre reinforced polyester resin composites into bone marrow of rabbits. Mater Sci Eng A. 2007;448:335–9.

    Article  CAS  Google Scholar 

  130. Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering. Biomaterials. 2004;32:477–86.

    Google Scholar 

  131. Zhou PY, Xia Y, Cheng XS, Wang PF, Xie Y, Xu SG. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACCzein composite scaffolds loaded with rhBMP-2. Biomaterials. 2014;35:10033–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wei, J., Zhao, T., Liao, J., Liu, Y., Li, L., Li, X. (2017). Scaffolds Reinforced by Fibers or Tubes for Hard Tissue Repair. In: Li, X. (eds) Tissue Repair . Springer, Singapore. https://doi.org/10.1007/978-981-10-3554-8_7

Download citation

Publish with us

Policies and ethics