Skip to main content

The Potential Matrix and Reinforcement Materials for the Preparation of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair

  • Chapter
  • First Online:
Tissue Repair
  • 738 Accesses

Abstract

In recent years, tissue engineering has shown great promise in both traumatic and non-traumatic tissue repair and regeneration. Abundant experiments have been conducted on the three key factors in tissue engineering, which are commonly considered to be seeding-cell, biomaterials and the development of newly-formed tissue. It is widely accepted that tissue engineering is defined as the use of biological, chemical and engineering methods to repair, restore and regenerate living tissues by using biomaterials, cells and growth factors. The scaffold is considered to be one of the vital components, which emulates the extracellular matrix (ECM) for inoculating cells and simultaneously provides templates for new tissue growth. It is highly expected that the scaffold has ideal mechanical properties for various applications in different tissues. Recently, a reasonable scaffold design has developed an effective way to enhance the performance of matrix scaffolds. Numerous studies have demonstrated that the mechanical properties of the scaffold can be greatly enhanced by the addition of nanoscale fibers, tubes or other additives. In this chapter, we mainly demonstrate potential materials for the matrix and reinforcements and the required manufacturing techniques used for the reinforced scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCullen SD, Haslauer CM, Loboa EG. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J Mater Chem. 2010;20:8776–88.

    Article  CAS  Google Scholar 

  2. Wang H, Chang X, Qiu G, Cui F, Weng X, Zhang B, et al. Axial vascularization of nano-HA/collagen/PLA composites by arteriovenous bundle. J Nanomater. 2013;2013:3061–9.

    Google Scholar 

  3. Mooney DJ, Mikos AG. Growing new organs. Sci Am. 1999;280:60–5.

    Article  CAS  PubMed  Google Scholar 

  4. Vimal SK, Ahamad N, Katti DS. A simple method for fabrication of electrospun fibers with controlled degree of alignment having potential for nerve regeneration applications. Mat Sci Eng C-Mater. 2016;63:616–27.

    Article  CAS  Google Scholar 

  5. Habib FN, Nikzad M, Masood SH, Saifullah ABM. Design and development of scaffolds for tissue engineering using three-dimensional printing for bio-based applications. 3d Print Addit Manuf. 2016;3:119–27.

    Article  Google Scholar 

  6. Ma SH, Yu B, Pei XW, Zhou F. Structural hydrogels. Polymer. 2016;98:516–35.

    Article  CAS  Google Scholar 

  7. Janowska-Wieczorek A, Marquez-Curtis LA, Shirvaikar N, Ratajczak MZ. The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion. 2012;52:2706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bezlaj. Še o rodbinskem imenu Tavčar. J Biomed Mater Res A. 2014;102:1580–94.

    Google Scholar 

  9. Li X, Yang Y, Fan Y, Feng Q, Cui FZ, Watari F. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J Biomed Mater Res A. 2014;102:1580–94.

    Article  PubMed  CAS  Google Scholar 

  10. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 2007;13:1845–66.

    Article  CAS  PubMed  Google Scholar 

  11. Levine B. A new era in porous metals: applications in orthopaedics. Adv Eng Mater. 2008;10:788–92.

    Article  CAS  Google Scholar 

  12. Nover AB, Lee SL, Georgescu MS, Howard DR, Saunders RA, Yu WT, et al. Porous titanium bases for osteochondral tissue engineering. Acta Biomater. 2015;27:286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rummo H, Veinthal R, Aruniit A. Pultruding of metal powder filled glass fiber reinforced polymer composites. Key Eng Mater. 2016;674:48–53.

    Article  Google Scholar 

  14. Suh SW, Shin JY, Kim JH, Kim JG, Beak CH, Kim DI, et al. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 2002;48:460–4.

    Article  CAS  PubMed  Google Scholar 

  15. Gu XN, Zheng YF, Zhong SP, Xi TF, Wang JQ, Wang WH. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials. 2010;31:1093–103.

    Article  CAS  PubMed  Google Scholar 

  16. Li ZJ, Gu XN, Lou SQ, Zheng YF. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang GF, Li QY, Wang CL, Dong J, He G. Characterization and investigation of the deformation behavior of porous magnesium scaffolds with entangled architectured pore channels. J Mech Behav Biomed Mater. 2016;64:139–50.

    Article  CAS  PubMed  Google Scholar 

  18. Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007a;81A:757–65.

    Article  CAS  Google Scholar 

  19. Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response. J Biomed Mater Res A. 2007;81:748–56.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Li XW, Li JG, Sun XD. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mat Sci Eng C-Mater. 2014;42:362–7.

    Article  CAS  Google Scholar 

  21. Cheng MQ, Wahafu T, Jiang GF, Liu W, Qiao YQ, Peng XC, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teixeira S, Fernandes H, Leusink A, Blitterswijk CV, Ferraz MP, Monteiro FJ, et al. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res A. 2010;93:567–75.

    CAS  PubMed  Google Scholar 

  23. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28:45–54.

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–37.

    Article  CAS  PubMed  Google Scholar 

  25. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen M. 2013;7:631–41.

    Article  CAS  Google Scholar 

  26. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mat Sci Eng C-Mater. 2015;47:237–47.

    Article  CAS  Google Scholar 

  27. Descamps M, Duhoo T, Monchau F, Lu J, Hardouin P, Hornez JC, et al. Manufacture of macroporous beta-tricalcium phosphate bioceramics. J Eur Ceram Soc. 2008;28:149–57.

    Article  CAS  Google Scholar 

  28. Farzadi A, Waran V, Solati-Hashjin M, Rahman ZAA, Asadi M, Abu Osman NA. Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram Int. 2015;41:8320–30.

    Article  CAS  Google Scholar 

  29. Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Func Biomat. 2010;1:22–7.

    Article  CAS  Google Scholar 

  30. Guarino V, Causa F, Taddei P, di Foggia M, Ciapetti G, Martini D, et al. Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials. 2008;29:3662–70.

    Article  CAS  PubMed  Google Scholar 

  31. Kruger R, Groll J. Fiber reinforced calcium phosphate cements – on the way to degradable load bearing bone substitutes? Biomaterials. 2012;33:5887–900.

    Article  PubMed  CAS  Google Scholar 

  32. Xu HH, Eichmiller FC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers. J Biomed Mater Res B Appl Biomater. 2000;52:107–14.

    Article  CAS  Google Scholar 

  33. Canal C, Ginebra MP. Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed Mater. 2011;4:1658–71.

    Article  CAS  PubMed  Google Scholar 

  34. Santos LAD, Oliveira LCD, Rigo ECDS, Carrodéguas RG, Boschi AO, Arruda ACFD. Fiber reinforced calcium phosphate cement. Artif Organs. 2000;24:212–6.

    Article  PubMed  Google Scholar 

  35. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:405–6.

    Google Scholar 

  36. Janas VF, Tenhuisen KS. Viscous suspension spinning process for producing resorbable ceramic fibers and scaffolds. US:US6451059. 2002.

    Google Scholar 

  37. Smoak M, Hogan K, Kriegh L, Chen C, Terrell LKB. Modulation of mesenchymal stem cell behavior by nano and micro-sized beta-tricalcium phosphate particles in suspension and composite structures. J Nanopart Res. 2015;17:1–14.

    Article  CAS  Google Scholar 

  38. Wang Z, Li N, Li R, Li Y, Ruan L. Biodegradable intestinal stents: a review. Prog Nat Sci Mat Int. 2014;24:423–32.

    Article  CAS  Google Scholar 

  39. Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishino T, Peijs T. All-cellulose composites. Macromolecules. 2014;37:7683–7.

    Article  CAS  Google Scholar 

  41. Nidhin M, Vedhanayagam M, Sangeetha S, Kiran MS, Nazeer SS, Jayasree RS, et al. Fluorescent nanonetworks: a novel bioalley for collagen scaffolds and tissue engineering. Sci Rep. 2014;4:5968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karam JP, Muscari C, Montero-Menei CN. Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials. 2012;33:5683–95.

    Article  CAS  PubMed  Google Scholar 

  43. Kuttappan S, Mathew D, Nair MB. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering – a mini review. Int J Biol Macromol. 2016;93:1390–401.

    Article  CAS  PubMed  Google Scholar 

  44. Malafaya PB, Santos TC, van Griensven M, Reis RL. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials. 2008;29:3914–26.

    Article  CAS  PubMed  Google Scholar 

  45. Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloid Surface A. 2008;313:183–8.

    Article  CAS  Google Scholar 

  46. Cheung HY, Lau KT, Lu TP, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B-Eng. 2007;38:291–300.

    Article  CAS  Google Scholar 

  47. Rana D, Arulkumar S, Vishwakarma A, Ramalingam M. Chapter 10–Considerations on designing scaffold for tissue engineering. Stem Cell Biol Tiss Eng Dental Sci. 2015;133–48.

    Google Scholar 

  48. Xiong Y, Zeng YS, Zeng CG, Du BL, He LM, Quan DP, et al. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials. 2009;30:3711–22.

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Wang C, Lü S, Wu J, Guo X, Duan C, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res. 2005;319:429–38.

    Article  PubMed  Google Scholar 

  50. Kim GH. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomed Mater 2008;3:025010.

    Google Scholar 

  51. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38:1487–503.

    Article  CAS  Google Scholar 

  52. Jiao YP, Liu ZH, Zhou CR. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility. J Biomed Mater Res A. 2007;80:820–5.

    Article  PubMed  CAS  Google Scholar 

  53. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering – a review. Carbohydr Polym. 2013;92:1262–79.

    Article  CAS  PubMed  Google Scholar 

  54. Ben-Nissan B, Pezzotti G. Bioceramics: processing routes and mechanical evaluation. J Ceram Soc Jpn. 2002;110:601–8.

    Article  CAS  Google Scholar 

  55. Fresno F, Portela R, Suarez S, Coronado J. Photocatalytic materials: recent achievements and near future trends. J Mater Chem. 2014;2:2863–84.

    Article  CAS  Google Scholar 

  56. John MJ, Thomas S. Biofibres and biocomposites. Carbohydr Polym. 2008;71:343–64.

    Article  CAS  Google Scholar 

  57. Boccaccini AR, Verrier S. Bioactive composite materials for bone tissue engineering scaffolds. Expert Rev Med Device. 2005;2:303–17.

    Article  CAS  Google Scholar 

  58. Niiranen H, Pyhältö T, Rokkanen P, Kellomäki M, Törmälä P. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. J Biomed Mater Res A. 2004;69:699–708.

    Article  PubMed  CAS  Google Scholar 

  59. Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci. 2008;43:4433–42.

    Article  CAS  Google Scholar 

  60. Miao X, Tan LP, Tan LS, et al. Porous calcium phosphate ceramics modified with PLGA–bioactive glass. Mater Sci Eng C. 2007;27:274–9.

    Article  CAS  Google Scholar 

  61. Marsich E, Bellomo F, Turco G, Travan A, Donati I, Paoletti S. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J Mater Sci Mater Med. 2013;24:1799–807.

    Article  CAS  PubMed  Google Scholar 

  62. Gu XN, Wang X, Li N, Li L, Zheng YF, Miao X. Microstructure and characteristics of the metal–ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration †. J Biomed Mat Res Part B App Biom. 2011;99:127–34.

    Article  CAS  Google Scholar 

  63. Hall SM. The Schwann cell: a reappraisal of its role in the peripheral nervous system. Neuropathol Appl Neurobiol. 2008;4:165–76.

    Article  Google Scholar 

  64. Razavi S, Zarkesh-Esfahani H, Morshed M, Vaezifar S, Karbasi S, Golozar MA. Nanobiocomposite of poly(lactide- co -glycolide)/chitosan electrospun scaffold can promote proliferation and transdifferentiation of Schwann-like cells from human adipose-derived stem cells. J Biomed Mater Res A. 2015;103:2628–34.

    Article  CAS  PubMed  Google Scholar 

  65. Jia L, Duan Z, Fan D, Mi Y, Hui J, Chang L. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes. Mater Sci Eng C. 2013;33:727–34.

    Article  CAS  Google Scholar 

  66. Li X, Feng Q, Wang W, Cui F. Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering. J Biomed Mat Res B Appl Biomater. 2006;77:219–26.

    Article  CAS  Google Scholar 

  67. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater. 2007;6:162–7.

    Article  CAS  PubMed  Google Scholar 

  68. Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology. 2008;45:501–12.

    PubMed  PubMed Central  Google Scholar 

  69. Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev. 2009;15:17–27.

    Article  CAS  PubMed  Google Scholar 

  70. Grinstaff MW. Dendritic macromers for hydrogel formation: tailored materials for ophthalmic, orthopedic, and biotech applications. J Polym Sci Part A Polym Chem. 2008;46:383–400.

    Article  CAS  Google Scholar 

  71. Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li WJ, Tuan RS, et al. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev. 2009;15:171–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Byers BA, Baksh D. Translation of new tissue engineering materials to clinical application. In: Biomaterials for Tissue Engineering Applications. 2011. p. 541–61.

    Google Scholar 

  73. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv. 2013;31:669–87.

    Article  CAS  PubMed  Google Scholar 

  74. Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials. 2006;27:3934–44.

    Article  CAS  PubMed  Google Scholar 

  75. Michael CM, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A. 2007;81:299–309.

    Google Scholar 

  76. Wan-Ju Lia, JA Cooper Jr, RLM, Rocky ST. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–385.

    Google Scholar 

  77. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Ji HY, et al. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate- co -3-hydroxyvalerate). Int J Biol Macromol. 2004;34:249–56.

    Article  CAS  PubMed  Google Scholar 

  78. Palmer S, Hall W. Objective surface evaluation of fiber reinforced polymer composites. Appl Compos Mater. 2013;20(4):627–37.

    Article  Google Scholar 

  79. Caves JM, Cui WX, Wen J, Kumar VA, Haller CA, Chaikof EL. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials. 2011;32:5371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG. Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng. 2001;7:767–80.

    Article  CAS  PubMed  Google Scholar 

  81. Guarino V, Ambrosio L. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Biomater. 2008;4:1778–87.

    Article  CAS  PubMed  Google Scholar 

  82. Cont L, Grant D, Scotchford C, Todea M, Popa C. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering. J Biomater Appl. 2013;27:707–16.

    Article  PubMed  Google Scholar 

  83. Illeperuma WRK, Sun JY, Suo Z, Vlassak JJ. Fiber-reinforced tough hydrogels. Extreme Mech Letter. 2014;1:90–6.

    Article  Google Scholar 

  84. Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, Kelly TAN, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27–36.

    Article  CAS  PubMed  Google Scholar 

  85. Calvert P, Agrawal A, Chalivendra NRV. Tough, strong hydrogels with elastomeric fiber reinforcement. Mrs Online Proc Lib. 2012;1420. DOI:10.1557/opl.2012.686.

    Google Scholar 

  86. Agrawal A, Rahbar N, Calvert PD. Strong fiber-reinforced hydrogel. Acta Biomater. 2013;9:5313–8.

    Article  CAS  PubMed  Google Scholar 

  87. Visser J, Melchels FP, Jeon JE, van Bussel EM, Kimpton LS, Byrne HM, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 2015;6:6933.

    Article  CAS  PubMed  Google Scholar 

  88. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, et al. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc. 2002;124:11864–5.

    Article  CAS  PubMed  Google Scholar 

  89. Sang BL, Mitchell DT, Trofin L, Nevanen TK, SÖderlund H, Martin CR. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science. 2002;296:2198–200.

    Article  Google Scholar 

  90. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  91. Bacon R. Growth, structure, and properties of graphite whiskers. J Appl Phys. 1960;31:283–90.

    Article  Google Scholar 

  92. Wang W, Liao S, Liu M, Zhao Q, Zhu Y. Polymer composites reinforced by nanotubes as scaffolds for tissue engineering. Int J Polym Sci. 2014;2014:1–14.

    Google Scholar 

  93. Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, et al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs invitro and ectopic bone formation invivo. Biomaterials. 2012;33:4818–27.

    Article  CAS  PubMed  Google Scholar 

  94. Kim JS, Song KS, Yu IJ. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health. 2013;31:747–57.

    Article  PubMed  CAS  Google Scholar 

  95. Barrientos-Durán A, Carpenter EM, Zur Nieden NI, Malinin TI, Rodríguez-Manzaneque JC, Zanello LP. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model. Int J Nanomedicine. 2014;9:4277–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett. 2003;83:1689–91.

    Article  CAS  Google Scholar 

  97. Dloczik L, Engelhardt R, Ernst K, Fiechter S, Sieber I, Konenkamp R. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl Phys Lett. 2001;78:3687–9.

    Article  CAS  Google Scholar 

  98. Nath M, Rao CNR. ChemInform abstract: new metal disulfide nanotubes. ChemInform. 2010;32:4841–2.

    Google Scholar 

  99. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE. ChemInform abstract: CVD growth of boron nitride nanotubes. ChemInform. 2000;31:1808–10.

    Article  Google Scholar 

  100. Galvan DH, Jun-Ho K, Maple MB, Avalos-Borja M, Adem E. Formation of NbSe2 nanotubes by electron irradiation. Fuller Sci Technol. 2000;8:143–51.

    Article  CAS  Google Scholar 

  101. Kim H, Jin C, Park S, Wan IL, Chin IJ, Lee C. Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem Eng J. 2013;s215–216:151–6.

    Google Scholar 

  102. Wang Z, Wang S, Li J, Gao F, Weber WJ. Structure and electronic properties of saturated and unsaturated gallium nitride nanotubes. J Phys Chem C. 2009;113:19281–5.

    Article  CAS  Google Scholar 

  103. Chandiramouli R. Band structure and transport studies on InP nanotube – a first-principles investigation. Superlattice Microst. 2015;83:193–209.

    Article  CAS  Google Scholar 

  104. Fan R, Wu Y, Li D, Yue M, Arun Majumdar A, Yang P. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc. 2003;125:5254–5.

    Article  CAS  PubMed  Google Scholar 

  105. Wu Q, Hu Z, Wang X, Chen X, Xu H, et al. Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J Am Chem Soc. 2003;125:10176–7.

    Article  CAS  PubMed  Google Scholar 

  106. Rothschild A, Sloan J, Tenne R. Growth of WS2 nanotubes phases. J Am Chem Soc. 2000;122:5169–79.

    Article  CAS  Google Scholar 

  107. Gupta P, Sharan S, Roy P, Lahiri D. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon. 2015;95:715–24.

    Article  CAS  Google Scholar 

  108. Wang X, Li Q, Xie J, Zhong J, Wang J, Li Y, et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 2009;9:3137–41.

    Article  CAS  PubMed  Google Scholar 

  109. Saito R, Dresselhaus G, Dresselhaus MS. Physical properties of carbon nanotubes. Int Winterschool Electron. 1998;442:467–80.

    Google Scholar 

  110. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Microsc Microanal. 2002;334:173–8.

    Google Scholar 

  111. Hong S, Myung S. Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol. 2007;2:207–18.

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Gao H, Uo M, Sato Y, Akasaka T, Abe S, et al. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed Mater. 2009;4:015005.

    Article  PubMed  CAS  Google Scholar 

  113. Kang M, Chen P, Jin HJ. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Curr Appl Phys. 2009;9:S95–7.

    Article  Google Scholar 

  114. Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61:1899–912.

    Article  CAS  Google Scholar 

  115. Shin SR. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2012;6:362–72.

    Article  CAS  PubMed  Google Scholar 

  116. Zawadzak E, Bil M, Ryszkowska J, Nazhat SN, Cho J, Bretcanu O, et al. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomed Mater. 2008;4:71–9.

    Google Scholar 

  117. Mikael PE, Amini AR, Basu J, Arellano-Jimenez MJ, Laurencin CT, Sanders MM, et al. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater. 2014;9:035001.

    Article  PubMed  CAS  Google Scholar 

  118. Edwards SL, Werkmeister JA, Ramshaw JAM. Carbon nanotubes in scaffolds for tissue engineering. Expert Rev Med Devices. 2009;6:499–505.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang HL. Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J Bioact Compat Polym. 2011;26:347–62.

    Article  CAS  Google Scholar 

  120. Vozzi G, Corallo C, Daraio C. Pressure-activated microsyringe composite scaffold of poly(L-lactic acid) and carbon nanotubes for bone tissue engineering. J Appl Polym Sci. 2013;129:528–36.

    Article  CAS  Google Scholar 

  121. Chen L, Hu JX, Shen XY, Tong H. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering. J Mater Sci-Mater M. 2013;24:1843–51.

    Article  CAS  Google Scholar 

  122. Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials. 2008;29:94–102.

    Article  CAS  PubMed  Google Scholar 

  123. Yildirim ED, Yin X, Nair K, et al. Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B Appl Biomater. 2008;87:406–14.

    Article  PubMed  CAS  Google Scholar 

  124. Hu H, Ni YC, Mandal SK, Montana V, Zhao N, Haddon RC, et al. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B. 2005;109:4285–9.

    Article  CAS  PubMed  Google Scholar 

  125. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci. 2000;14:175–82.

    Article  CAS  PubMed  Google Scholar 

  126. Ma R, Bando Y, Sato T. Controlled synthesis of BN nanotubes, nanobamboos, and nanocables. Adv Mater. 2002;14:366–8.

    Article  CAS  Google Scholar 

  127. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc. 2009;131:890–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu HK, Li B, Zhang CR, Wang SQ, Liu K. Microstructure and mechanical properties of BN nanotubes reinforced Si3N4 porous composites. Mater Sci Forum. 2015;816:64–70.

    Article  Google Scholar 

  129. Arani AG, Shajari AR, Amir S, et al. Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid. Physica E. 2012;45:109–21.

    Article  CAS  Google Scholar 

  130. Arani AG, Shajari AR, Atabakhshian V, Amir S, Loghman A. Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs. Compos Part B Eng. 2013;44:424–32.

    Article  CAS  Google Scholar 

  131. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, et al. Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 2010;6:3524–33.

    Article  CAS  PubMed  Google Scholar 

  132. Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater. 2011;4:44–56.

    Article  CAS  PubMed  Google Scholar 

  133. Zhi C, Bando Y, Tang C, Golberg D. Immobilization of proteins on boron nitride nanotubes. J Am Chem Soc. 2005;127:17144–5.

    Article  CAS  PubMed  Google Scholar 

  134. Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc Natl Acad Sci U S A. 2006;103:523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang MS, Kaplan-Ashiri I, Wei XL, Rosentsveig R, Wagner HD, Tenne R, et al. In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res. 2008;1:22–31.

    Article  CAS  Google Scholar 

  136. Elad Z, Sharon B, Mark S, Hanna D, Samuel K, Reshef T, et al. The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhes Sci Technol. 2011;25:1603–17.

    Article  CAS  Google Scholar 

  137. Reddy CS, Zak A, Zussman E. WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J Mater Chem. 2011;21:16086–93.

    Article  CAS  Google Scholar 

  138. Lalwani G, Henslee AM, Farshid B, Parmar P, Lin L, Qin YX, et al. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater. 2013;9:8365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA. Review of titania nanotubes: fabrication and cellular response. Ceram Int. 2012;38:4421–35.

    Article  CAS  Google Scholar 

  140. Minagar S, Li Y, Berndt CC, Wen C. The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomater. 2015;12:281–9.

    Article  CAS  PubMed  Google Scholar 

  141. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2009;92:1218–24.

    Google Scholar 

  142. Gao C, Yu L, Liu H, Chen L. Development of self-reinforced polymer composites. Prog Polym Sci. 2012;37:767–80.

    Article  CAS  Google Scholar 

  143. Alcock B, Peijs T. Technology and development of self-reinforced polymer composites. Adv Polym Sci. 2013;251:H1775–84.

    Google Scholar 

  144. Alcock B, Peijs T. Technology and development of self-reinforced polymer composites. Adv Polym Sci. 2013;251:1–76.

    Article  CAS  Google Scholar 

  145. Li MZ, Lu SZ. Material for repairing defective tissue of body and its preparing process. CN:1179757. 2004.

    Google Scholar 

  146. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC. Self-reinforced melt processable composites of sisal. Compos Sci Technol. 2003;63:177–86.

    Article  CAS  Google Scholar 

  147. Deng M, Shalaby SW. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites. Biomaterials. 1997;18:645–55.

    Article  CAS  PubMed  Google Scholar 

  148. Majola A, Vainionpää S, Rokkanen P, Mikkola HM, Törmälä P. Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation: strength and strength retention in the bone and subcutaneous tissue of rabbits. J Mater Sci Mater Med. 1992;3:43–7.

    Article  CAS  Google Scholar 

  149. Wrightcharlesworth DD, Miller DM, Miskioglu I, King JA. Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months. J Biomed Mater Res A. 2005;74:388–96.

    Article  CAS  Google Scholar 

  150. Wright DD, Lautenschlager EP, Gilbert JL. Bending and fracture toughness of woven self-reinforced composite poly(methyl methacrylate). J Biomed Mater Res. 1997;36:441–53.

    Article  CAS  PubMed  Google Scholar 

  151. Wright DD, Lautenschlager EP, Gilbert JL. Interfacial properties of self-reinforced composite poly(methyl methacrylate). J Biomed Mater Res. 1998;43:153–61.

    Article  CAS  PubMed  Google Scholar 

  152. Wright DD, Gilbert JL, Lautenschlager EP. The effect of processing temperature and time on the structure and fracture characteristics of self-reinforced composite poly(methyl methacrylate). J Mater Sci Mater Med. 1999;10:503–12.

    Article  CAS  PubMed  Google Scholar 

  153. Wright DD. Optimizaton and thermomechanical characterization of highly oriented PMMA fibers and self-reinforced composite PMMA. 1999;60:6227–96.

    Google Scholar 

  154. Wright-Charlesworth DD, Peers WJ, Miskioglu I, Loo LL. Nanomechanical properties of self-reinforced composite poly(methyl methacrylate) as a function of processing temperature. J Biomed Mater Res A. 2005;74A:306–14.

    Article  CAS  Google Scholar 

  155. Amer MS, Ganapathiraju S. Effects of processing parameters on axial stiffness of self-reinforced polyethylene composites. J Appl Polym Sci. 2001;81:1136–41.

    Article  CAS  Google Scholar 

  156. Abrahamsson CK, Yang F, Park H, Brunger JM, Valonen PK, Langer R, et al. Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng A. 2010;16:3709–18.

    Article  CAS  Google Scholar 

  157. Barber JG, Handorf AM, Allee TJ, Li WJ. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng A. 2013;19:1265–74.

    Article  CAS  Google Scholar 

  158. Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci. 2006;103:5054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Laurent CP, Durville D, Mainard D, Ganghoffer JF, Rahouadj R. A multilayer braided scaffold for anterior cruciate ligament: mechanical modeling at the fiber scale. J Mech Behav Biomed Mater. 2012;12:184–96.

    Article  CAS  PubMed  Google Scholar 

  160. Freeman JW, Woods MD, Laurencin CT. Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J Biomech. 2006;40:2029–36.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Aytemiz D, Sakiyama W, Yu S, et al. Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge. Adv Healthc Mater. 2013;2(2):361–8.

    Article  CAS  PubMed  Google Scholar 

  162. Huang ZM. The mechanical properties of composites reinforced with woven and braided fabrics. Compos Sci Technol. 2000;60:479–98.

    Article  CAS  Google Scholar 

  163. Xu W, Zhou F, Ouyang C, Ye W, Yao M, Xu B. Mechanical properties of small-diameter polyurethane vascular grafts reinforced by weft-knitted tubular fabric. J Biomed Mater Res A. 2010;92A:1–8.

    Article  CAS  Google Scholar 

  164. Ananta M, Aulin CE, Hilborn J, Aibibu D, Houis S, Brown RA, et al. A poly(lactic acid-co-caprolactone)-collagen hybrid for tissue engineering applications. Tissue Eng A. 2009;15:1667–75.

    Article  CAS  Google Scholar 

  165. Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Engineering. InTech, 2010.

    Google Scholar 

  166. Meitl MA, Zhou Y, Gaur A, Jeon S, Usrey ML, Strano MS, et al. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 2004;4:1643–7.

    Article  CAS  Google Scholar 

  167. Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG, et al. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules. 2010;11:2345–51.

    Article  CAS  PubMed  Google Scholar 

  168. Sadat-Shojai M, Khorasani MT, Jamshidi A, Irani S. Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties. Mat Sci Eng C-Mater. 2013;33:2776–87.

    Article  CAS  Google Scholar 

  169. Lin CH, Su JM, Hsu SH. Evaluation of type II collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea. Tissue Eng Pt C-Meth. 2008;14:69–77.

    Article  CAS  Google Scholar 

  170. Julkapli NM, Akil HM, Ahmad Z. Thermal properties of 4,4-oxydiphathalic anhydride chitosan filled chitosan bio-composites. J Therm Anal Calorim. 2012;107:365–76.

    Article  CAS  Google Scholar 

  171. Govindasamy K, Muhammad Hafiz R, Pooria P, Vengidesh P, Babak S. Chitosan/cellulose/halloysite membranes produced using solvent casting method. Polym Polym Compos. 2015;23:325–32.

    CAS  Google Scholar 

  172. Kong I, Tshai KY, Hoque ME. Manufacturing of natural fibre-reinforced polymer composites by solvent casting method. Springer International Publishing; 2015. p. 331–49.

    Google Scholar 

  173. Ma PX, Langer R. Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. Methods Mol Med. 1999;18:47–56.

    CAS  PubMed  Google Scholar 

  174. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, et al. In vitro and in vivo degradation of porous poly(dl -lactic- co -glycolic acid) foams. Biomaterials. 2000;21:1837–45.

    Article  CAS  PubMed  Google Scholar 

  175. Bonnaud L, Pascault JP, Sautereau H, Zhao JQ, Jia DM. Effect of reinforcing glass fibers on morphology and properties of thermoplastic modified epoxy-aromatic diamine matrix. Polym Compos. 2004;25:368–74.

    Article  CAS  Google Scholar 

  176. Mou ZL, Duan LM, Qi XN, Zhang ZQ. Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Mater Lett. 2013;105:189–91.

    Article  CAS  Google Scholar 

  177. Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–42.

    Article  CAS  Google Scholar 

  178. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29–39.

    Article  CAS  PubMed  Google Scholar 

  179. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47:8–17.

    Article  CAS  PubMed  Google Scholar 

  180. Ma H, Xue L. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation. Nanotechnology. 2015;26:025701.

    Article  CAS  PubMed  Google Scholar 

  181. Nakhoda HM, Dahman Y. Novel biodegradable polyurethanes reinforced with green nanofibers for applications in tissue engineering. Synthesis and characterization. Can J Chem Eng. 2014;92:1895–902.

    Article  CAS  Google Scholar 

  182. Mi HY, Jing X, Salick MR, Cordie TM, Turng LS. Carbon nanotube (CNT) and nanofibrillated, cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (MOO) as solvent. J Mech Behav Biomed Mater. 2016;62:417–27.

    Article  CAS  PubMed  Google Scholar 

  183. Tian F, Niu XF, Li XM, Feng QL, Fan YB. Porous poly(L-lactic acid) scaffold reinforced by titanium dioxide nanoparticles. J Biomater Tiss Eng. 2016;6:478–83.

    Article  Google Scholar 

  184. Cai Q, Yang J, Bei J, Wang S. A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials. 2003;23:4483–92.

    Article  Google Scholar 

  185. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. Berlin/Heidelberg: Springer; 1995.

    Book  Google Scholar 

  186. Hou Q, Grijpma DW, Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials. 2003;24:1937–47.

    Article  CAS  PubMed  Google Scholar 

  187. Capes JS, Ando HY, Cameron RE. Fabrication of polymeric scaffolds with a controlled distribution of pores. J Mater Sci Mater Med. 2005;16:1069–75.

    Article  CAS  PubMed  Google Scholar 

  188. Converse GL, Conrad TL, Merrill CH, Roeder RK. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds. Acta Biomater. 2010;6:856–63.

    Article  CAS  PubMed  Google Scholar 

  189. Johnson T, Bahrampourian R, Patel A, Mequanint K. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed Mater Eng. 2010;20:107–18.

    CAS  PubMed  Google Scholar 

  190. Yang Y, Jin Z, Zhao Y, Liang W, Yuan X, Fan Y. Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. J Appl Polym Sci. 2008;109:1232–41.

    Article  CAS  Google Scholar 

  191. Salerno A, Fernández-Gutiérrez M, Barrio JSRD, Domingo C. Bio-safe fabrication of PLA scaffolds for bone tissue engineering by combining phase separation, porogen leaching and scCO 2 drying. J Supercrit Fluid. 2015;97:238–46.

    Article  CAS  Google Scholar 

  192. Rajkhowa R, Gil ES, Kluge J, Numata K, Wang L, Wang X, et al. Reinforcing silk scaffolds with silk particles. Macromol Biosci. 2010;10:599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gil ES, Kluge JA, Rockwood DN, Rajkhowa R, Wang L, Wang X, et al. Mechanical improvements to reinforced porous silk scaffolds †. J Biomed Mater Res A. 2011;99:16–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Mikos AG, Sarakinos G, Leite SM, Vacant JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993;14:323–30.

    Article  CAS  PubMed  Google Scholar 

  195. Mather ML, Crowe JA, Morgan SP, White LJ, Kalashnikov AN, Ivchenko VG, et al. Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication. J Mater Sci Mater Med. 2008;19:3071–80.

    Article  CAS  PubMed  Google Scholar 

  196. Moore MJ, Jabbari E, Ritman EL, Lu L, Currier BL, Windebank AJ, et al. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. J Biomed Mater Res A. 2004;71:258–67.

    Article  PubMed  CAS  Google Scholar 

  197. Xin HZ, Lai YL, Jie SHJ, Tong YW, Wang CH. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol Bioeng. 2008;100:998–1009.

    Article  CAS  Google Scholar 

  198. Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res. 2000;53:1–7.

    Article  CAS  PubMed  Google Scholar 

  199. Gravel M, Vago R, Tabrizian M. Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: microarchitectural and mechanical studies. Tissue Eng. 2006;12:589–600.

    Article  CAS  PubMed  Google Scholar 

  200. Yun HL, Lee JH, An IG, Chan K, Lee DS, Lee YK, et al. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005;26:3165–72.

    Article  CAS  Google Scholar 

  201. Kim J, Hollinger JO. Recombinant human bone morphogenetic protein-2 released from polyurethane-based scaffolds promotes early osteogenic differentiation of human mesenchymal stem cells. Biomed Mater. 2012;7:45008–16.

    Article  CAS  Google Scholar 

  202. Gorna K, Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res A. 2003;67A:813–27.

    Article  CAS  Google Scholar 

  203. Puglia D, Ceccolini R, Fortunati E, Armentano I, Morena F, Martino S, et al. Effect of processing techniques on the 3D microstructure of poly (L-lactic acid) scaffolds reinforced with wool keratin from different sources. J Appl Polym Sci. 2015;132:42890.

    Article  CAS  Google Scholar 

  204. Armani DK, Liu C. Microfabrication technology for polycaprolactone, a biodegradable polymer. J Micromec Microeng. 2000;10:80–4.

    Article  CAS  Google Scholar 

  205. Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 2011;7:1653–64.

    Article  CAS  PubMed  Google Scholar 

  206. Oh SH, Park SC, Kim HK, Koh YJ, Lee JH. Degradation Behavior of 3D Porous Polydioxanone-b-Polycaprolactone Scaffolds Fabricated Using the Melt-Molding Particulate-Leaching Method. J Biomater Sci Polym Ed. 2010;22:225–37.

    Article  CAS  Google Scholar 

  207. Botchwey EA, Pollack SR, Levine EM, Laurencin CT. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res. 2001;55:242–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mat Sci Eng C Mat Biol Appl. 2013;33:1380–8.

    Article  CAS  Google Scholar 

  209. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  210. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24:2363–78.

    Article  CAS  PubMed  Google Scholar 

  211. Bretcanu O, Samaille C, Boccaccini AR. Simple methods to fabricate Bioglass ® -derived glass–ceramic scaffolds exhibiting porosity gradient. J Mater Sci. 2008;43:4127–34.

    Article  CAS  Google Scholar 

  212. Shokrolahi F, Mirzadeh H, Yeganeh H. Fabrication of poly(urethane urea)-based scaffolds for bone tissue engineering by a combined strategy of using compression moulding and particulate leaching methods. Iran Polym J. 2011;20:645–58.

    CAS  Google Scholar 

  213. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  CAS  PubMed  Google Scholar 

  215. Mandal BB, Kundu SC. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Biomaterials. 2009;30:5019–30.

    Article  CAS  PubMed  Google Scholar 

  216. Kane RJ, Roeder RK. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. J Mech Behav Biomed Mater. 2012;7:41–9.

    Article  CAS  PubMed  Google Scholar 

  217. Mobini S, Hoyer B, Solati-Hashjin M, Lode A, Nosoudi N, Samadikuchaksaraei A, et al. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. J Biomed Mater Res A. 2013;101A:2392–404.

    Article  CAS  Google Scholar 

  218. Hiraoka Y, Hiroki U, Kimura Y, Tabata Y. Fabrication and characterization of mechanically reinforced collagen sponge. Key Eng Mater. 2005;288–289:240–7.

    Google Scholar 

  219. Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30:2956–65.

    Article  CAS  PubMed  Google Scholar 

  220. Zamanian A, Ghorbani F, Nojehdehian H. Morphological comparison of PLGA/gelatin scaffolds produced by freeze casting and freeze drying methods. Appl Mech Mater. 2013;467:108–11.

    Article  CAS  Google Scholar 

  221. Clyne AM. Thermal processing of tissue engineering scaffolds. J Heat Transf. 2011;133:174–94.

    Article  Google Scholar 

  222. Spaans CJ, Groot JHD, Belgraver VW, Pennings AJ. A new biomedical polyurethane with a high modulus based on 1,4-butanediisocyanate and epsilon-caprolactone. J Mater Sci Mater Med. 1998;9:675–8.

    Article  CAS  PubMed  Google Scholar 

  223. Finoli A, Ostrowski N, Schmelzer E, Nettleship I, Gerlach J. Multiscale porous ceramic scaffolds for culturing of primary human cells. Adv Appl Ceram. 2013;111:262–8.

    Article  CAS  Google Scholar 

  224. Niu X, Li X, Liu H, Zhou G, Feng Q, Cui F, et al. Homogeneous chitosan/poly(L-Lactide) composite scaffolds prepared by emulsion freeze-drying. J Biomater Sci Polym Ed. 2012;23:391–404.

    Article  CAS  PubMed  Google Scholar 

  225. Jung SH, Jang JW, Kim SH, Hong HH, Oh AY, Rhee JM, et al. Articular cartilage regeneration using hyaluronic acid loaded PLGA scaffold by emulsion freeze-drying method. Tissue Eng Regen Med. 2008;5:643–9.

    Google Scholar 

  226. Shemesh M, Zilberman M. Structure–property effects of novel bioresorbable hybrid structures with controlled release of analgesic drugs for wound healing applications. Acta Biomater. 2013;10:1380–91.

    Article  PubMed  CAS  Google Scholar 

  227. Li W-J, Laurencin CT, Caterson EJ, Rocky ST, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.

    Article  CAS  PubMed  Google Scholar 

  228. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z. Electrospun nanofibers: solving global issues. Mater Today. 2006;9:40–50.

    Article  CAS  Google Scholar 

  229. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125–31.

    Article  CAS  PubMed  Google Scholar 

  230. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35:151–60.

    Article  CAS  Google Scholar 

  231. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Ind Appl Soc Meet. 1993;3:1698–703.

    Article  Google Scholar 

  232. He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, et al. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules. 2014;15:618–27.

    Article  CAS  PubMed  Google Scholar 

  233. Yang CW, Deng GY, Chen WM, Ye XJ, Mo XM. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloid Surface B. 2014;122:270–6.

    Article  CAS  Google Scholar 

  234. Rui MAD, Chiera S, Gershovich P, et al. Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: reinforcement with cellulose nanocrystals. Adv Healthc Mater. 2016;5:1364–75.

    Article  CAS  Google Scholar 

  235. Eslami M, Vrana NE, Zorlutuna P, Sant S, Jung S, Masoumi N, et al. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J Biomater Appl. 2014;29:399–410.

    Article  CAS  PubMed  Google Scholar 

  236. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    Article  CAS  PubMed  Google Scholar 

  237. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–21.

    Article  CAS  PubMed  Google Scholar 

  238. Joshi KB, Singh P, Verma S. Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam. Biofabrication. 2009;1:1831–7.

    Article  CAS  Google Scholar 

  239. Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci. 2002;99:5133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Ectopic bone formation in collagen sponge self-assembled peptide–amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials. 2006;27:5089–98.

    Article  CAS  PubMed  Google Scholar 

  241. Zhou K, Thouas G, Bernard C, Forsythe JS. 3D presentation of a neurotrophic factor for the regulation of neural progenitor cells. Nanomedicine. 2014;9:1239–51.

    Article  CAS  PubMed  Google Scholar 

  242. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    Article  CAS  PubMed  Google Scholar 

  243. Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–9.

    Article  PubMed  Google Scholar 

  244. Li XY. Multi-object optimal design of rapid prototyping based on uniform experiment. Tsinghua Sci Technol. 2009;14:206–11.

    Google Scholar 

  245. Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid Prototyping. Circulation. 2008;117:2388–94.

    Article  PubMed  Google Scholar 

  246. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  CAS  PubMed  Google Scholar 

  247. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30.

    Article  CAS  PubMed  Google Scholar 

  248. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.

    Article  CAS  PubMed  Google Scholar 

  249. Naing MW, Chua CK, Leong KF. Computer aided tissue engineering scaffold fabrication. In: Virtual prototyping bio manufacturing in medical applications. Boston: Springer; 2008. p. 67–85.

    Chapter  Google Scholar 

  250. Kai H, Wang X, Madhukar KS, Qin L, Yan Y, Zhang R, et al. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique. Biofabrication. 2009;1:025003.

    Article  PubMed  CAS  Google Scholar 

  251. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    Article  CAS  PubMed  Google Scholar 

  252. Lian Q, Li D, Jin Z, Wang J, Li A, Wang Z. Fabrication and in vitro evaluation of calcium phosphate combined with chitosan fibers for scaffold structures. J Bioact Compat Polym. 2009;24:113–24.

    Article  CAS  Google Scholar 

  253. Alge DL, Bennett J, Treasure T, Voytik-Harbin S, Goebel WS, Chu TMG. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J Biomed Mater Res A. 2012;100:1792–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Yong BK, Kim GH. Rapid-prototyped collagen scaffolds reinforced with PCL/β-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J Mater Chem. 2012;22:16880–9.

    Article  CAS  Google Scholar 

  255. Min L, Dunn JCY, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials. 2005;26:4281–9.

    Article  CAS  Google Scholar 

  256. Min L, Wu BM. Recent advances in 3D printing of tissue engineering scaffolds. Methods Mol Biol. 2012;868:257–67.

    Article  CAS  Google Scholar 

  257. Christ S, Schnabel M, Vorndran E, Groll J, Gbureck U. Fiber reinforcement during 3D printing. Mater Lett. 2015;139:165–8.

    Article  CAS  Google Scholar 

  258. Munaz A, Vadivelu RK, St. John J, Barton M, Kamble H, Nguyen N-T. Three-dimensional printing of biological matters. J Sci Adv Mat Devices. 2016;1:1–17.

    Article  Google Scholar 

  259. Jung JW, Lee H, Hong JM, Park JH, Shim JH, Choi TH, et al. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Biofabrication. 2015;7:045003.

    Article  PubMed  Google Scholar 

  260. Bakarich SE, Gorkin R 3rd, in het Panhuis M, Spinks GM. Three-dimensional printing fiber reinforced hydrogel composites. Acs Applied Materials & Interfaces 2014;6:15998–16006.

    Google Scholar 

  261. Suwanprateeb J. Improvement in mechanical properties of three-dimensional printing parts made from natural polymers reinforced by acrylate resin for biomedical applications: a double infiltration approach. Polym Int. 2006;55:57–62.

    Article  CAS  Google Scholar 

  262. Pegg DE. Principles of tissue engineering. Academic Press. 2013:378-379.

    Google Scholar 

  263. Vozzi G, Previti A, De RD, et al. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8:1089–98.

    Article  CAS  PubMed  Google Scholar 

  264. Vozzi G, Flaim C, Ahluwalia A, Bhatia S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials. 2003;24:2533–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, W., Mei, L., Wang, F., Pei, B., Li, X. (2017). The Potential Matrix and Reinforcement Materials for the Preparation of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair. In: Li, X. (eds) Tissue Repair . Springer, Singapore. https://doi.org/10.1007/978-981-10-3554-8_2

Download citation

Publish with us

Policies and ethics