Skip to main content

Molecular Models (Force Fields)

  • Chapter
  • First Online:
Molecular Simulation Studies on Thermophysical Properties

Part of the book series: Molecular Modeling and Simulation ((MMAS))

  • 1762 Accesses

Abstract

Molecular simulation studies require the accurate calculation of the potential energy of the system as function of its configuration and the structures of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abascal JLF, Vega C (2005) A general purpose model for the condensed phase of water: TIP4P/2005. J Chem Phys 123:234505

    Article  Google Scholar 

  2. Alder BJ, Gass DM, Wainwright TE (1970) Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J Chem Phys 53:3813–3826

    Article  Google Scholar 

  3. Allinger NL (1977) Conformational analysis. 130. MM2, a hydrocarbon force field utilizing \(V_1\) and \(V_2\) torsional terms. J Am Chem Soc 99:8127–8134

    Article  Google Scholar 

  4. Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299

    Article  Google Scholar 

  5. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5):2727–2742

    Article  Google Scholar 

  6. Baskes MI, Lee BJ, Kim HI, Cho YK (2001) Second nearest neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64:184102

    Article  Google Scholar 

  7. Bedrov D, Borodin O, Li Z, Smith GD (2010) Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. J Phys Chem B 114(15):4984–4997

    Article  Google Scholar 

  8. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  Google Scholar 

  9. Berendsen HJC, Postma JPM, vanGunsteren WF, Hermans J (1981) In: Pullmann B (ed) Intermolecular forces. Reidel, Dordrecht

    Google Scholar 

  10. Bhargava BL, Balasubramanian S, Klein ML (2008) Modelling room temperature ionic liquids. Chem Commun 3339–3351

    Google Scholar 

  11. Breneman CM, Wiberg KB (1989) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comp Chem 11:361–373

    Article  Google Scholar 

  12. Brewer L, Edwards RK (1954) The stability of SiO solid and gas. J Phys Chem 58(4):351–358

    Article  Google Scholar 

  13. Bukowski R, Szalewicz K (2001) Complete ab initio three-body nonadditive potential in Monte Carlo simulations of vapor-liquid equilibria and pure phase of argon. J Chem Phys 114(21):9518–9531

    Article  Google Scholar 

  14. Canongia Lopes JN, Pádua A (2006) Molecular force field for ionic liquids III: imidazolium, pyridium, and phosphonium cations; chloride, bromide and dycanamide anions. J Phys Chem B 110:19586–19592

    Google Scholar 

  15. Cencek W, Patkowski K, Szalewicz K (2009) Full configuration-interaction calculation of the three-body nonadditive contribution to helium interaction potential. J Chem Phys 131:064105

    Article  Google Scholar 

  16. Chapmann S, Cowling TG (1970) The mathematical theory of nonuniform gases. Chambridge University Press, London

    Google Scholar 

  17. Chatterjee PG, Debenedetti PG, Stillinger FH, Lynden-Bell RM (2008) A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models. J Chem Phys 128:124511

    Article  Google Scholar 

  18. Chen B, Siepmann JI (1999) Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of normal alkanes. J Phys Chem B 103:5370–5379

    Article  Google Scholar 

  19. Chen IJ, Yin D, MacKerell AD (2002) Combined ab initio/empirical optimization of Lennard-Jones paramaters for polar neutral compounds. J Comp Chem 23:199–213

    Article  Google Scholar 

  20. Childs BG, Weintraub S (1949) The measurement of the thermal expansion of single crystals of tin by an interferometric method. Proc Phys Soc B 63:267–277

    Google Scholar 

  21. Chirlain LE, Francl MM (1987) Charges fit to electrostatic potentials. J Comp Chem 8:894–904

    Article  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollmann PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  23. Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  Google Scholar 

  24. Daubert TE, Jalowka JW, Goren V (1987) Vapor pressure of 22 pure industrial chemicals. AIChE Symp Series 83:128–156

    Google Scholar 

  25. Deshpande VT, Sirdeshmukh DB (1961) Thermal expansion of tetragonal tin. Acta Crystallogr 14:355–356

    Article  Google Scholar 

  26. Deul R (1984) Dielektrizitätskonstante und Dichte von Wasser-Benzol-Mischungen bis 400\({}^\circ \)C und 3000 bar. PhD Thesis Karlsruhe, Germany

    Google Scholar 

  27. Dommert F, Wendler K, Qiao B, Delle Site L, Holm C (2014) Generic force fields for ionic liquids. J Mol Liq 192:32–37

    Article  Google Scholar 

  28. Dymond JH, Alder BJ (1966) Van der waals theory of transport in dense fluids. J Chem Phys 45:2061–2068

    Article  Google Scholar 

  29. Engin C, Merker T, Vrabec J, Hasse H (2011) Flexible or rigid molecular models? A study on vapour-liquid equilibrium properties of ammonia. Mol Phys 109:619–624

    Article  Google Scholar 

  30. Ermakova E, Solca J, Steinbrunner G, Huber HH (1998) Ab initio calculation of the three-body potential to be applied in simulations of fluid neon. Chem Eur J 4:377

    Article  Google Scholar 

  31. Errington JR, Panagiotopoulos AZ (1999) A new intermolecular potential model for the n-alkanes homologous series. J Phys Chem B 103:6314–6322

    Google Scholar 

  32. Eskandari Nasrabad AE (2008) Theory and atomistic simulation of krypton fluid. J Chem Phys 129:244503

    Article  Google Scholar 

  33. Finnes MW, Sinclair JE (1984) Philos Mag A 50:45

    Article  Google Scholar 

  34. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983–7991

    Article  Google Scholar 

  35. Foloppe N, MacKerell AD Jr, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (2000) All-atom empirical force field for nuclei acids I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comp Chem 21:86–104

    Google Scholar 

  36. Fox T, Kollman PA (1998) Application of the RESP mythology in the parameterization of organic solvents. J Phys Chem B 102:8070–8079

    Article  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi OI, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A.7. Gaussian, Inc., Pittsburgh, PA,

    Google Scholar 

  38. Geerke DP, vanGunsteren WF (2007) On the calculation of atomic forces in classical simulation using the charge-on-spring methods to explicity treat electronic polarization. J Chem Theor Comput 3:2128–2137

    Article  Google Scholar 

  39. Gonzalez MA, Abascal JLF (2011) A flexible model for water based on TIP4P/2005. J Chem Phys 135:224516

    Article  Google Scholar 

  40. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The cambridge structure database. Acta Crystallogr B72:171–179

    Google Scholar 

  41. Götzlaff W (1988) Zustandsgleichung und elektrischer Transport am kritschen Punkt des fluiden Quecksilbers. PhD Thesis Marburg, Germany

    Google Scholar 

  42. Haley P, Cybulski SM (2003) Ground state potential energy curves for He-Kr, Ne-Kr, and Kr2: coupled-cluster calculations and comparison with experiment. J Chem Phys 119:5487

    Article  Google Scholar 

  43. Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comp Chem 15(5+6):616–641

    Google Scholar 

  44. Halgren TA (1998) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 17(5–6):490–519

    Google Scholar 

  45. Halgren TA, Damm W (2001) Polarizable force fields. Current Opin Struct Biol 11:236–242

    Article  Google Scholar 

  46. Hellmann R (2013) Ab initio potential energy surface for the nitrogen molecule pair and thermophysical properties of nitrogen gas. Mol Phys 111:387

    Article  Google Scholar 

  47. Hellmann R (2014) Ab initio potential energy surface for the carbon dioxide molecule pair and thermophysical properties of dilute carbon dioxide gas. Chem Phys Lett 613:133

    Article  Google Scholar 

  48. Hellmann R, Bich E, Vogel E (2007) Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. I. Helium-helium interatomic potential. Mol Phys 105:3013

    Article  Google Scholar 

  49. Hellmann R, Bich E, Vogel E (2008) Ab initio intermolecular potential energy surface and second pressure virial coefficient of methane. J Chem Phys 128:214303

    Article  Google Scholar 

  50. Hellmann R, Bich E, Vogel E (2008) Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon-neon interatomic potential and rovibrational spectra. Mol Phys 106:133

    Article  Google Scholar 

  51. Hellmann R, Bich E, Vogel E, Vesovic V (2011) Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide. Phys Chem Chem Phys 13:13749

    Article  Google Scholar 

  52. Hensel F, Warren JWW (1999) Fluid metals: the liquid-vapor transition of metals. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  53. Hinchliffe A (2008) Molecular modelling for beginners, 2nd edn. Wiley

    Google Scholar 

  54. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  55. Hulse R, Singh RR, Pham H (2009) Physical properties of HFO-1234yf. In: 3rd IIR conference on thermophysical properties and transfer processes of refrigerants, Boulder, USA

    Google Scholar 

  56. Hulse RJ, Rajat SB, Singh RR, Thomas RHP (2012) Physical properties of HCFO-1233zd(E). J Chem Eng Data 57:3581–3586

    Article  Google Scholar 

  57. Jäger B, Hellmann R, Bich E, Vogel E (2009) Ab initio potential energy curve for the argon atom pair and thermophysical properties of the dilute argon gas. I. Argon-argon interatomic potential and rovibrational spectra. Mol Phys 107:2181

    Article  Google Scholar 

  58. Jäger B, Hellmann R, Bich E, Vogel E (2011) Ab initio virial equation of state for argon using a new nonadditive three-body potential. J Chem Phys 135:084308

    Article  Google Scholar 

  59. Jorgensen WL, Chandrasekhar J, Madure JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  Google Scholar 

  60. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Google Scholar 

  61. Jorgensen WL, Maxwell DS, Tirado-Rives J (1997) OPLS all-atom force field for carbohydrates. J Comp Chem 18(16):1955–1970

    Article  Google Scholar 

  62. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  Google Scholar 

  63. Klähn M, Seduraman A, Wu P (2008) A force field for guanidinium-based ionic liquids that utilizes the electron charge distribution of the actual liquid: a molecular simulation study. J Phys Chem B 112:10989–11004

    Article  Google Scholar 

  64. Kohagen M, Brehm M, Thar J, Zhao W, Müller-Plathe F, Kirchner B (2011) Performance of quantum chemically derived charges and persistence of ion cages in ionic liquids. J Phys Chem B 115:693–702

    Article  Google Scholar 

  65. Krynicki K, Green CD, Sawyer DW (1978) Pressure and temperature dependence of self-diffusion in water. Faraday Discuss Chem. Soc. 66:199

    Google Scholar 

  66. Lamb WJ, Hoffman GA, Jonas J (1981) Self-diffusion in compressed supercritical water. J Chem Phys 74:6875–6880

    Article  Google Scholar 

  67. Lemmon EW, Huber ML, McLinden MO (2013) NIST Standard reference database 23: reference fluid thermodynamic and transport properties—REFPROP, Version 9.1, Standard Reference Data Program. National Institute of Standards and Technology: Gaithersburg, MD

    Google Scholar 

  68. Leonhard K, Deiters UK (2002) Monte Carlo simulations of nitrogen using an ab initio potential. Mol Phys 100(15):2571–2585

    Article  Google Scholar 

  69. Li S, Zhou Z, Sadus RJ (2007) Role of nonadditive forces on the structure and properties of liquid water. J Chem Phys 127:154509

    Article  Google Scholar 

  70. Lide DR, Frederikse HPR (1998) Handbook of chemistry & physics. CRC Press, New York

    Google Scholar 

  71. Liessmann G, Schmidt W, Reiffarth S (1995) Data compilation of the Sächsische Olefinwerke Böhlen

    Google Scholar 

  72. Liew CC, H I, Arai K (1998) Flexible molecular models for molecular dynamics study of near and supercritical water. Fluid Phase Equilib 144:287–298

    Google Scholar 

  73. Liu L, Liu Y, Zybin SV, Sun H, Goddard WA III (2011) ReaxFF-lg: corrections of the ReaxFF reactive force field for london dispersion, with application to the equation of state for energetic materials. J Phys Chem A 115(40):11016–11022

    Article  Google Scholar 

  74. Logothetit GE, Ramos GE, Economou IG (2009) Molecular modeling of imidazolium-based [Tf2N-] ionic liquids: microscopic structure, thermodynamic and dynamic properties, and segmental dynamics. J Phys Chem B 113(20):7211–7224

    Article  Google Scholar 

  75. Lópes-Lemus J, Chapela GA, Alejandre J (2008) Effect of flexibility on surface tension and coexisting densities of water. J Chem Phys 128:174703

    Article  Google Scholar 

  76. Lucas TR, Bauer BA, Patel S (2012) Charge equilibration force fields for molecular dynamics simulations of lipids, bilayers, and integral membrane protein systems. Biochemica et Biophysica Acta (BBA)—Biomembranes 1818:318–329

    Article  Google Scholar 

  77. MacKerell JAD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comp Chem 25(13):1584–1604

    Article  Google Scholar 

  78. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Ha S, Joseph-McCarthy D, Kuchnir J, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, M S, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M, (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Google Scholar 

  79. MacKerrel Jr A (2007) Empirical force fields. In: Xu Y, Xu D, Liang J (eds) Computational methods for protein structure prediction and modeling. Springer, New York

    Google Scholar 

  80. Maginn EJ (2007) Atomistic simulation of the thermodynamic and transport properties of ionic liquids. Acc Chem Res 40:1200–1207

    Article  Google Scholar 

  81. Marcelli G, Sadus RJ (1999) Molecular simulation of the phase behaviour of noble gases using accurate two-body and three-body intermolecular potentials. J Chem Phys 111(4):1533–1540

    Article  Google Scholar 

  82. Marcelli G, Sadus RJ (2000) A link between the two-body and three-body interaction energies of fluids from molecular simulation. J Chem Phys 112:6382–6385

    Article  Google Scholar 

  83. Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem 102:2569–2577

    Article  Google Scholar 

  84. Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Annalen der Physik 11:657–697

    Article  MATH  Google Scholar 

  85. Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(20):12807–12813

    Google Scholar 

  86. Nath SK, A EF, dePablo JJ, (1998) On the simulation of vapor-liquid equilibria for alkanes. J Chem Phys 108:9905–9911

    Google Scholar 

  87. ofStandard NI, Technology (2006) Computational chemistry comparison and benchmark database, Release 14. http://cccbdb.nist.gov

  88. Paricaud P, Pr̆edota, Chialvo AA, Cummings PT (2005) From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. J Chem Phys 122:6244511

    Google Scholar 

  89. Patel S, Brooks CL III (2003) CHARMM fluctuating charge force field for proteins: I Parameterization and application to bulk organic liquid simulations. J Comput Chem 25(1):1–15

    Article  Google Scholar 

  90. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  MATH  Google Scholar 

  91. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Prot Chem 66:27–85

    Article  Google Scholar 

  92. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Mobley DL, Schnieders MJ, Haque DS, ILambrecht, DiStasio JRA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B6 114:2549–2564

    Google Scholar 

  93. Potter SC, Tildesley DJ, Burgess AN, Rogers SC (1997) A transferable potential model for the liquid-vapor equilibria of fluoromethanes. Mol Phys 92(5):825–833

    Article  Google Scholar 

  94. Raabe G (2010) Development of force field models for alternative refrigerants based on fluoropropenes, including HFO-1234yf. Final report, DFG-Fellowship (Forschungsstipendium) RA 946/2-1

    Google Scholar 

  95. Raabe G (2012) Molecular modeling of fluoropropene refrigerants. J Phys Chem B 116:5744–5751

    Article  Google Scholar 

  96. Raabe G (2013) Molecular simulation studies on the vapor-liquid-equilibria of binary mixtures of R-1234yf and R-1234ze(E) with R-32 and \(CO_2\). J Chem Eng Data 58:1867–1873

    Article  Google Scholar 

  97. Raabe G (2015) Molecular simulation studies on the vapor-liquid-equilibria of the cis- and trans-HCFO-1233zd and the cis- and trans-HFO-1336mzz. J Chem Eng Data 60:2412–2419

    Article  Google Scholar 

  98. Raabe G, Maginn EJ (2010) A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf. J Phys Chem B 114:10133–10142

    Article  Google Scholar 

  99. Raabe G, Maginn EJ (2010) Molecular modeling of the vapor-liquid equilibrium properties of the alternative refrigerant 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf). J Phys Chem Lett 1:93–96

    Article  Google Scholar 

  100. Raabe G, Mai JP, Köhler J (2013) Herstellung von Rohsilizium (mg-Si) im Mikrowellenofen. Deutsche Bundesstiftung Umwelt AZ-28408

    Google Scholar 

  101. Raabe G, Sadus RJ (2003) Monte Carlo simulation of the vapor-liquid coexistence of mercury. J Chem Phys 119(13):6691–6697

    Article  Google Scholar 

  102. Raabe G, Sadus RJ (2007) Influence of bond flexibility on the vapor-liquid phase equilibria of water. J Chem Phys 126:044701

    Article  Google Scholar 

  103. Raabe G, Sadus RJ (2011) Molecular dynamics simulation of the dielectric constant of water: the effect of bond flexibility. J Chem Phys 134:234501

    Article  Google Scholar 

  104. Raabe G, Sadus RJ (2012) Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water. J Chem Phys 127:104701

    Google Scholar 

  105. Raabe G, Todd BD, Sadus RJ (2005) Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve. J Chem Phys 123:034511

    Article  Google Scholar 

  106. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff W (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  107. Ravelo R, Baskes M (1997) Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys Rev Lett 70(3):2482–2485

    Article  Google Scholar 

  108. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947

    Article  Google Scholar 

  109. Rick SW, Stuart SJ, Bader JS, Berne BJ (1995) Fluctuating charge force field for aqueous solutions. J Mol Liquids 65(66):31–40

    Article  Google Scholar 

  110. Russo JMF, Van Duin ACT (2010) Atomic-scale simulations of chemical reactions: binding from quantum chemistry to engineering. Nucl Instrum Meth B 269:1549–1554

    Article  Google Scholar 

  111. Schei A (1967) On the chemistry of ferrosilicon production. Tidsskr Kjemi Bergv 17:152–158

    Google Scholar 

  112. Schwerdtfeger P, Wesendrup R, Moyano GE, Sadlej AJ, J G, Hensel F (2001) The potential energy curve and dipole polarizability tensor of mercury dimer. J Chem Phys 115:7401

    Google Scholar 

  113. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, vanGunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(1):3596–3607

    Article  Google Scholar 

  114. Seffert N, Wipff G (2006) The [BMI][T\(f_2\)N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid-liquid-interface. J Phys Chem B 110(26):13076–13085

    Article  Google Scholar 

  115. Shvab I, Sadus RJ (2015) Thermophysical properties of supercritical water and bond flexibility. Phys Rev E 92:012124

    Article  Google Scholar 

  116. Singh R (2009) Personal communication

    Google Scholar 

  117. Singh UC, Kollmann P (1984) An approach to computing electrostatic charges for molecules. J Comp Chem 5:129

    Article  Google Scholar 

  118. Sivera FI, Goldman VV (1978) J Chem Phys 69:4209

    Article  Google Scholar 

  119. Stoll J, Vrabec J, Hasse H (2003) A set of molecular models for carbon monoxide and halogenated hydrocarbons. J Chem Phys 119:11396–11407

    Article  Google Scholar 

  120. Sugawara S, Sato T, Minamiyama T (1962) Thermodynamic and electrical properties of fluid Hg up to the liquid-vapor critical point. Bull Jap Soc Mech 5:711

    Article  Google Scholar 

  121. Sum AK, Biddy MJ, dePablo JJ, Tupy MJ (2003) Predictive molecular model for the thermodynamic and transport properties of triacylglycerols. J Phys Chem B 107:14443–14451

    Article  Google Scholar 

  122. Sutton AP, Chen J (1990) Long-range Finnis-Sinclair potentials. Philos Mag Lett 61:139

    Article  Google Scholar 

  123. Tanaka K (2014) Personal Communication

    Google Scholar 

  124. Tanaka K, Higashi Y (2009) 3rd IIR conference on thermophysical properties and transfer processes of refrigerants. Boulder, USA

    Google Scholar 

  125. Tanaka Y, Matsuda Y, Fujiwara H, Kuboty H, Makita T (1987) Viscosity of (water+alcohol) mixtures under high pressure. Int J Thermophys 147-163

    Google Scholar 

  126. Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59:341–350

    Article  Google Scholar 

  127. Hv Tippelskirch (1977) Transport coefficients of expanded fluid metals. Z Naturforsch 32:1146–1151

    Google Scholar 

  128. Hv Tippelskirch, Frank EU, Hensel F, Kestin J (1975) Viscosity of fluid mercury to 1529 K and 100 bar. Ber Bunsenges Phys Chem 79:889–897

    Article  Google Scholar 

  129. Valadez-Huerta G (2012) Molekulardynamik-Simulationen zu Eigenschaften von Lotmaterialien. Diplomarbeit, Institut für Thermodynamik, TU Braunschweig

    Google Scholar 

  130. Van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Article  Google Scholar 

  131. Van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA III (2003) ReaxFFSio reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811

    Article  Google Scholar 

  132. Vanommeslaeghe K, MacKerrel Jr AD (2015) CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochemica et Biophysica Acta (BBA)—General Subjects 1850:861–871

    Google Scholar 

  133. Vargaftik NB, Vinogradov YK, Yargin VS (1996) Handbook of physical properties of liquid and gases, 3rd edn. Begell House, New York

    Google Scholar 

  134. Wang J, Kollman PA (2001) Automatic parametrization of force field by systematic search and genetic algorithms. J Comp Chem 22(12):1219–1228

    Article  Google Scholar 

  135. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J Comp Chem 25(9):1157–1174

    Google Scholar 

  136. Woolf LA (1975) Tracer diffusion of tritiated water (THO) in ordinary water (\(H_2O\)) under pressure. J Chem SoC Faraday Trans 71:784–796

    Article  Google Scholar 

  137. Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124:024503

    Article  Google Scholar 

  138. Yang J, Tian A, Sun H (2000) COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, \(H_2\), \(O_2\), \(N_2\), NO, CO, \(CO_2\), \(NO_2\), \(CS_2\), and \(SO_2\), in liquid phases. J Phys Chem B 104:4951–4957

    Article  Google Scholar 

  139. Youngs TG, Hardacre C (2008) Application of static charge transfer with an ionic-liquid force field and its effect on structure and dynamics. ChemPhysChem 9(11):1548–1558

    Article  Google Scholar 

  140. Yu H, vanGunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172:69–85

    Google Scholar 

  141. Zernov VS, Kogan VB, Lyubetskii SG, Duntov FI (1971) J Appl Chem USSR 44:693–696

    Google Scholar 

  142. Zhang Y, Maginn EJ (2012) A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids. J Phys Chem B 116(33):10036–10048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Raabe .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Raabe, G. (2017). Molecular Models (Force Fields). In: Molecular Simulation Studies on Thermophysical Properties. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-3545-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3545-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3544-9

  • Online ISBN: 978-981-10-3545-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics