Advertisement

Design for Innovation: Toys for Sustainable Play

  • L. PereiraEmail author
  • V. M. Lira
  • R. Gaspar
  • A. F. Manoel
  • L. M. Pereira
  • F. K. V. Moreira
  • J. M. Marconcini
  • L. H. C. Mattoso
  • G. L. Mantovani
  • R. Mafalda
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 66)

Abstract

In this paper, we estimate the impact of alternative materials and manufacturing when designing toys considering both the impact on children health and on the environment. In order to achieve this goal, we have proposed to design a geometric box set that can be 3D printed with a material prepared with beetroot puree. Although the results have showed it is possible to obtain functional properties using alternative greener materials manufactured with additive prototyping machines, it was expected that the impact on the environment could be more significant. In other words, in addition to innovation in materials, which in this case end up providing a safer product for children, much more need to be done in other steps of the design and production chain in order to reduce gas emissions.

Keywords

Toys design Sustainable materials 3D printing Children safety 

References

  1. 1.
    Ashby, M.F.; Johnson, K.: Materials and design: the art and science of material selection in product design. Butterworth-Heinemann (2013)Google Scholar
  2. 2.
    Becker, M., Edwards, S., Massey, R.I.: Toxic chemicals in toys and children’s products: limitations of current responses and recommendations for government and industry. Environ. Sci. Technol. 44(21), 7986–7991 (2010)CrossRefGoogle Scholar
  3. 3.
    Peters, S.: Material Revolution 2: new sustainable and multi-purpose materials for design and architecture. Walter de Gruyter (2014)Google Scholar
  4. 4.
    Pereira, L., Mafalda, R., Marconcini, J.M., Mantovani, G.L.: The use of sugarcane bagasse-based green materials for sustainable packaging design. Smart Innovation, Systems and Technologies. Springer India, vol. 2, pp. 113–123 (2015)Google Scholar
  5. 5.
    Hernandez-Izquierdo, V.M., Krochta, J.M.: Thermoplastic processing of proteins for film formation—a review. J. Food Sci. 73(2), R30–R39 (2008)CrossRefGoogle Scholar
  6. 6.
    Ratto, M., Ree, R.: Materializing information: 3D printing and social change. First Monday. 17(7) 2012Google Scholar
  7. 7.
    Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Graph. 31(6), 127 (2012)CrossRefGoogle Scholar
  8. 8.
    Crawford, Sally: The archaeology of play things: Theorising a toy stage in the’biography’of objects. Child. Past 2(1), 55–70 (2009)CrossRefGoogle Scholar
  9. 9.
    Kamp, K.: Where have all the children gone? The archaeology of childhood. J. Archaeol. Method Theory 8, 1–34 (2001)Google Scholar
  10. 10.
    Greenfield, P.: Children, material culture and weaving. Child. Mater. Cult. (2000)Google Scholar
  11. 11.
    Ashby, M.F.: Materials and the environment: eco-informed material choice. Elsevier (2012)Google Scholar
  12. 12.
    Johnson, M.: Eric. Learning from toys: Lessons in managing supply chain risk from the toy industry. Calif. Manage. Rev. 43(3), 106–124 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sole, M., Watson, J., Puig, R., & Fullana, P.: Proposal of a new model to improve the collection of small WEEE: a pilot project for the recovery and recycling of toys. Waste Manage. Res. 0734242X11434563 (2012)Google Scholar
  14. 14.
    McCullough, D.G.: Waste-to-toys: the growing market for eco-friendly, high-quality toys. The Guardian https://www.theguardian.com/sustainable-business/2014/jun/16/eco-friendly-sustainable-toys-growing-market-waste-recycling(2014). Retrieved 26 Aug 2016
  15. 15.
    R1 Classification and structure of materials. https://tigrrrrrr.wordpress.com/2011/05/27/r1-classification-and-structure-of-materials/(2011). Retrieved 01 May 2016
  16. 16.
    Rustagi, N., Pradhan, S.K. and Singh,R.: Public health impact of plastics: an overview. Indian J. Occup. Environ. Med. 15(3), 100 (2011)Google Scholar
  17. 17.
    Lorevice, M.V., Moura, M.R.D., Mattoso, L.H.: Nanocomposite of papaya puree and chitosan nanoparticles for application in packaging. Quim. Nova. 37(6), 931–936 (2014)Google Scholar
  18. 18.
    McMichael, P.: A food regime analysis of the ‘world food crisis’. Agric. Hum. Values 26(4), 281–295 (2009)CrossRefGoogle Scholar
  19. 19.
    Kristoufek, L., Janda, K., Zilberman, D.: Correlations between biofuels and related commodities before and during the food crisis: a taxonomy perspective. Energy Econ. 34(5), 1380–1391 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • L. Pereira
    • 1
    Email author
  • V. M. Lira
    • 1
  • R. Gaspar
    • 1
  • A. F. Manoel
    • 1
  • L. M. Pereira
    • 1
  • F. K. V. Moreira
    • 2
  • J. M. Marconcini
    • 2
  • L. H. C. Mattoso
    • 2
  • G. L. Mantovani
    • 1
  • R. Mafalda
    • 1
  1. 1.Center for Engineering, Modeling and Applied Social SciencesFederal University of ABCSanto AndréBrazil
  2. 2.National Nanotechnology Laboratory for AgricultureEmbrapa Agricultural InstrumentationSão CarlosBrazil

Personalised recommendations