Representing the Effects of Product Architecture for Decision-Making in Conceptual Design

  • Timo RichterEmail author
  • David Inkermann
  • Thomas Vietor
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 66)


The definition of the product architecture has a great impact on customer satisfaction, company strategy, and costs. Whereas these effects mostly become visible in later stages of the product development, most decisions on the product architecture are made early in conceptual design when allocations of functions to solution elements are determined. To support these decisions, many methodical approaches exist, for instance, for functional integration or modularization. However, a big part of those merely addresses single effects of the product architecture. This paper presents a comprehensive approach to draw correlations between targets derived from the specific development task and methods for product architecture design. Therefore, it contributes towards the structuring of existing methods in order to enable the designer to select most suitable methods for specific development tasks.


Product architecture Conceptual design Integration Modularization 


  1. 1.
    Ulrich, K.: The role of product architecture in the manufacturing firm. Res. Policy 24(3), 419–440 (1995)CrossRefGoogle Scholar
  2. 2.
    Roth, K.: Konstruieren mit Konstruktionskatalogen, Konstruktionslehre. Springer, Berlin (2000)CrossRefGoogle Scholar
  3. 3.
    Sosa, M.E., Eppinger, S.D., Rowles, C.M.: The misalignment of product architecture and organizational structure in complex product development. Manage. Sci. 50(12), 1674–1689 (2004)CrossRefGoogle Scholar
  4. 4.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design—A Systematic Approach. Springer, Berlin (2007)Google Scholar
  5. 5.
    Erens, F., Verhulst, K.: Architectures for product families. Comput. Ind. 33(2–3), 165–178 (1997)CrossRefGoogle Scholar
  6. 6.
    Ziebart, J.R.: Ein konstruktionsmethodischer Ansatz zur Funktionsintegration: TU Braunschweig (2012)Google Scholar
  7. 7.
    Fricke, E., Schulz, A.P.: Design for changeability (DfC): principles to enable changes in systems throughout their entire lifecycle. Syst. Eng. 8(4), 342–359 (2005)CrossRefGoogle Scholar
  8. 8.
    Weber, C.: Looking at DFX and product maturity from the perspective of a new approach to modelling product and product development processes. In: Proceedings of the 17th CIRP Design Conference, pp. 85–104 (2007)Google Scholar
  9. 9.
    Yassine, A.A., Wissmann, L.A.: The implications of product architecture on the firm. Syst. Eng. 10(2), 118–137 (2007)CrossRefGoogle Scholar
  10. 10.
    Kipp, T.: Methodische Unterstützung der variantengerechten Produktgestaltung. TU Hamburg-Harburg (2012)Google Scholar
  11. 11.
    Ericsson, A., Erixon, G.: Controlling Design Variants—Modular Product-Platforms. Society of Manufacturing Engineers, Dearborn Michigan (1999)Google Scholar
  12. 12.
    Richter, T., Inkermann, D., Vietor, T.: Product architecture design as a key task within conceptual design. In: International Design Conference (DESIGN16), pp. 1337–1346 (2016)Google Scholar
  13. 13.
    Buur, J., Andreasen, M.M.: Design models in mechatronic product development. Des. Stud. 10(3), 155–162 (1989)CrossRefGoogle Scholar
  14. 14.
    Eppinger, S.D., Salminen, V.: Patterns of product development interactions. In: International Conference on Engineering Design, pp. 283–290 (2001)Google Scholar
  15. 15.
    Richter, T., Inkermann, D., Vietor, T.: A framework for integrated product architecture design. In: Proceedings of NordDesign 2016, pp. 310–320 (2016)Google Scholar
  16. 16.
    Otto, K., Hölttä-Otto, K., Simpson, T.W., Krause, D., Ripperda, S., Moon, S.K.: Global views on modular design research: linking alternative methods to support modular product family concept development. J. Mech. Des. 138(7), 071101-071101-16 (2016)Google Scholar
  17. 17.
    Krause, D., Beckmann, G., Eilmus, S., Gebhardt, N., Jonas, H., Rettberg, R.: Integrated development of modular product families: a methods toolkit. In: Simpson, W.T., Jiao, J., Siddique, Z., Hölttä-Otto, K. (eds.) Advances in Product Family and Product Platform Design: Methods & Applications, pp. 245–269. Springer, New York (2014)CrossRefGoogle Scholar
  18. 18.
    Gero, J.S., Kannengiesser, U.: The situated function-behaviour-structure framework. Des. Stud. 25(4), 373–391 (2004)CrossRefGoogle Scholar
  19. 19.
    Crilly, N., Moultrie, J., Clarkson, P.J.: Seeing things: consumer response to the visual domain in product design. Des. Stud. 25(6), 547–577 (2004)CrossRefGoogle Scholar
  20. 20.
    Hubka, V., Eder, W.E.: Theory of Technical Systems: A Total Concept Theory for Engineering Design. Springer, Berlin (1988)CrossRefGoogle Scholar
  21. 21.
    Stechert, C., Franke, H.-J.: Managing requirements as the core of multidisciplinary product development. CIRP J. Manufact. Sci. Technol. 1(3), 153–158 (2009)CrossRefGoogle Scholar
  22. 22.
    Köckerling, M., Gausemeiner, J.: Systematisches Entwickeln der Wirkstruktur mechatronischer Systeme. In: Gausemeier, J., Lückel, J., Wallaschek, J. (eds.) Intelligente Mechatronische Systeme, vol. 1, pp. 217–230 (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.TU BraunschweigInstitut für KonstruktionstechnikBraunschweigGermany

Personalised recommendations