Skip to main content

Connotations of Ecodesign: A Commentary on the State of Discourse

  • Conference paper
  • First Online:
  • 2133 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 66))

Abstract

Design, as a process of realizing a planned change, operates on specifications from the normative requirements and constraints emanating from the context of realizing the solution. The concept of ecodesign deals with principles that ensure a desirable state of the environment by appropriate design of products or solutions. There is a growing body of literature on ecodesign. However, perusal of the publications on the operational aspects of ecodesign points to a lack of rigour in qualifying ecodesign. This prompted the authors of this work to study the state of the discourse on ecodesign from the perspective of connotations of the term among engineering designers. The observations based on the scrutiny of the definitions of the term ecodesign from papers published in the years 2016 and 2015 in the Journal of Cleaner Production point to an undesirable situation of conveniently adapting interpretations of ecodesign to suit the design constraints sans justification and validation.

The original version of the chapter was revised: Belated corrections in the Table 1 have been updated. The erratum to the chapter is available at 10.1007/978-981-10-3521-0_90

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brones, F., de Carvalho, M.M.: From 50 to 1: integrating literature toward a systemic ecodesign model. J. Clean. Prod. 96(1), 44–57 (2015)

    Article  Google Scholar 

  2. Pigosso, D.C.A., McAloone, T.C., Rozenfeld, H.: Characterization of the state-of-the-art and identification of main trends for ecodesign tools and methods. J. Indian Inst. Sci 95(4), 414 (2015)

    Google Scholar 

  3. Brezet, H., van Hemel, C. (eds.): ECODESIGN: A Promising Approach to Sustainable Production and Consumption. UNEP, Paris (1997)

    Google Scholar 

  4. Fiksel, J.: Design for environment: an integrated systems approach. In: Proceedings of the 1993 IEEE International Symposium on Electronics and the Environment, pp. 126–131 (1993)

    Google Scholar 

  5. Cascini, A., Gamberi, M., Mora, C., Rosano, M., Bortolini, M.: Comparative carbon footprint assessment of commercial walk-in refrigeration systems under different use configurations. J. Clean. Prod. 112(Part 5), pp. 3998–4011 (2016)

    Google Scholar 

  6. Bonou, A., Skelton, K., Olsen, S.I.: Ecodesign framework for developing wind turbines. J. Clean. Prod. 126(10), 643–653 (2016)

    Article  Google Scholar 

  7. Dalhammar, C.: Industry attitudes towards ecodesign standards for improved resource efficiency. J. Clean. Prod. 123, 155–166 (2016)

    Article  Google Scholar 

  8. Lee, C., Lee, J., Choi, Y., Lee, K.: Application of the integrated ecodesign method using the GHG emission as a single indicator and its GHG recyclability. J. Clean. Prod. 112(Part 2), 1692–1699 (2016)

    Google Scholar 

  9. Park, C., Heo, K., Oh, S., Kim, S.B., Lee, S.H., Kim, H.Y., Kim, Y., Lee, J., Han, S.O., Lee, S., Kim, S.W.: Eco-design and evaluation for production of 7-aminocephalosporanic acid from carbohydrate wastes discharged after microalgae-based biodiesel production. J. Clean. Prod. 133, 511–517 (2016)

    Article  Google Scholar 

  10. Vieira, D.R., Bravo, A.: Life cycle carbon emissions assessment using an eco-demonstrator aircraft: the case of an ecological wing design. J. Clean. Prod. 124, 246–257 (2016)

    Article  Google Scholar 

  11. Annunziata, E., Testa, F., Iraldo, F., Frey, M.: Environmental responsibility in building design: an Italian regional study. J. Clean. Prod. 112(Part 1), pp. 639–648 (2016)

    Google Scholar 

  12. Dekoninck, E.A., Domingo, L., O’Hare, J.A., Pigosso, D.C.A., Reyes, T., Troussier, N.: Defining the challenges for ecodesign implementation in companies: development and consolidation of a framework. J. Clean. Prod. 135, 410–425 (2016)

    Article  Google Scholar 

  13. Cluzel, F., Yannou, B., Millet, D., Leroy, Y.: Eco-ideation and eco-selection of R&D projects portfolio in complex systems industries. J. Clean. Prod. 112(Part 5), pp. 4329–4343 (2016)

    Google Scholar 

  14. Moultrie, J., Sutcliffe, L., Maier, A.: A maturity grid assessment tool for environmentally conscious design in the medical device industry. J. Clean. Prod. 122, 252–265 (2016)

    Article  Google Scholar 

  15. Richter, J.L., Koppejan, R.: Extended producer responsibility for lamps in Nordic countries: best practices and challenges in closing material loops. J. Clean. Prod. 123, 167–179 (2016)

    Article  Google Scholar 

  16. Rossi, M., Germani, M., Zamagni, A.: Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. J. Clean. Prod. 129, 361–373 (2016)

    Article  Google Scholar 

  17. Kulak, M., Nemecek, T., Frossard, E., Gaillard, G.: Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France. J. Clean. Prod. 112(Part 4), pp. 2452–2461 (2016)

    Google Scholar 

  18. Sihvonen, S., Partanen, J.: Implementing environmental considerations within product development practices: a survey on employees’ perspectives. J. Clean. Prod. 125, 189–203 (2016)

    Article  Google Scholar 

  19. Kuo, T., Smith, S., Smith, G.C., Huang, S.H.: A predictive product attribute driven eco-design process using depth-first search. J. Clean. Prod. 112(Part 4), pp. 3201–3210 (2016)

    Google Scholar 

  20. de Souza, V.M., Borsato, M.: Combining stage-gate™ model using set-based concurrent engineering and sustainable end-of-life principles in a product development assessment tool. J. Clean. Prod. 112(Part 4), pp. 3222–3231 (2016)

    Google Scholar 

  21. Zeng, X., Li, J.: Measuring the recyclability of e-waste: an innovative method and its implications, J. Clean. Prod. 131 (2016)

    Google Scholar 

  22. Cobut, A., Beauregard, R., Blanchet, P.: Reducing the environmental footprint of interior wood doors in non-residential buildings—part 2: ecodesign. J. Clean. Prod. 109, 247–259 (2015)

    Article  Google Scholar 

  23. Cobut, A., Beauregard, R., Blanchet, P.: The environmental footprint of interior wood doors in non-residential buildings–part 1: life cycle assessment. J. Clean. Prod. 109, 232–246 (2015)

    Article  Google Scholar 

  24. Ahmadi, A., Tiruta-Barna, L.: A process modelling-life cycle assessment-multiobjective optimization tool for the eco-design of conventional treatment processes of potable water. J. Clean. Prod. 100, 116–125 (2015)

    Article  Google Scholar 

  25. Salazar, C., Lelah, A., Brissaud, D.: Eco-designing product service systems by degrading functions while maintaining user satisfaction. J. Clean. Prod. 87, 452–462 (2015)

    Article  Google Scholar 

  26. De Giorgi, C., Dal Palù, D., Allione, C.: Development and results of a cross border network project, aimed at the engineering of eco-compatible products. J. Clean. Prod. 106, 619–631 (2015)

    Article  Google Scholar 

  27. Verhulst, E., Van Doorsselaer, K.: Development of a hands-on toolkit to support integration of ecodesign in engineering programmes. J. Clean. Prod. 108(Part A), pp. 772–783 (2015)

    Google Scholar 

  28. Küçüksayraç, E.: Design for sustainability in companies: strategies, drivers and needs of Turkey’s best performing businesses. J. Clean. Prod. 106(1), 455–465 (2015)

    Article  Google Scholar 

  29. Küçüksayraç, E., Keskin, D., Brezet, H.: Intermediaries and innovation support in the design for sustainability field: cases from the Netherlands, Turkey and the United Kingdom. J. Clean. Prod. 101, 38–48 (2015)

    Article  Google Scholar 

  30. Benetto, E., Jury, C., Igos, E., Carton, J., Hild, P., Vergne, C., Di Martino, J.: Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: a screening life cycle assessment. J. Clean. Prod. 87, 953–960 (2015)

    Article  Google Scholar 

  31. MacDonald, E.F., She, J.: Seven cognitive concepts for successful eco-design. J. Clean. Prod. 92, 23–36 (2015)

    Article  Google Scholar 

  32. Del Pero, F., Delogu, M., Pierini, M., Bonaffini, D.: Life cycle assessment of a heavy metro train. J. Clean. Prod. 87, 787–799 (2015)

    Article  Google Scholar 

  33. Pacelli, F., Ostuzzi, F., Levi, M.: Reducing and reusing industrial scraps: a proposed method for industrial designers. J. Clean. Prod. 86, 78–87 (2015)

    Article  Google Scholar 

  34. Theodosiou, G., Stylos, N., Koroneos, C.: Integration of the environmental management aspect in the optimization of the design and planning of energy systems. J. Clean. Prod. 106, 576–593 (2015)

    Article  Google Scholar 

  35. Andriankaja, H., Vallet, F., Le Duigou, J., Eynard, B.: A method to ecodesign structural parts in the transport sector based on product life cycle management. J. Clean. Prod. 94, 165–176 (2015)

    Article  Google Scholar 

  36. Taghdisian, H., Pishvaie, M.R., Farhadi, F.: Multi-objective optimization approach for green design of methanol plant based on CO2-efficiency indicator. J. Clean. Prod. 103, 640–650 (2015)

    Article  Google Scholar 

  37. Issa, I.I., Pigosso, D.C.A., McAloone, T.C., Rozenfeld, H.: Leading product-related environmental performance indicators: a selection guide and database. J. Clean. Prod. 108(Part A), pp. 321–330 (2015)

    Google Scholar 

  38. Moultrie, J., Sutcliffe, L., Maier, A.: Exploratory study of the state of environmentally conscious design in the medical device industry, J. Clean. Prod. 108(Part A), pp. 363–376 (2015)

    Google Scholar 

  39. Daae, J., Boks, C.: A classification of user research methods for design for sustainable behaviour. J. Clean. Prod. 106, 680–689 (2015)

    Article  Google Scholar 

  40. Moreira, N., de Santa-Eulalia, L.A., Aït-Kadi, D., Wood-Harper, T., Wang, Y.: A conceptual framework to develop green textiles in the aeronautic completion industry: a case study in a large manufacturing company. J. Clean. Prod. 105, 371–388 (2015)

    Article  Google Scholar 

  41. Ghazilla, R.A.R., Sakundarini, N., Taha, Z., Abdul-Rashid, S.H., Yusoff, S.: Design for environment and design for disassembly practices in Malaysia: a practitioner’s perspectives. J. Clean. Prod. 108(Part A), pp. 331–342 (2015)

    Google Scholar 

  42. Allais, R., Reyes, T., Roucoules, L.: Inclusion of territorial resources in the product development process. J. Clean. Prod. 94, 187–197 (2015)

    Article  Google Scholar 

  43. Vidal, R., Salmeron, J.L., Mena, A., Chulvi, V.: Fuzzy cognitive map-based selection of TRIZ (theory of inventive problem solving) trends for eco-innovation of ceramic industry products. J. Clean. Prod. 107, 202–214 (2015)

    Article  Google Scholar 

  44. Ma, S., Hu, S., Chen, D., Zhu, B.: A case study of a phosphorus chemical firm’s application of resource efficiency and eco-efficiency in industrial metabolism under circular economy. J. Clean. Prod. 87, 839–849 (2015)

    Article  Google Scholar 

  45. Yu, S., Yang, Q., Tao, J., Xu, X.: Incorporating quality function deployment with modularity for the end-of-life of a product family. J. Clean. Prod. 87, 423–430 (2015)

    Article  Google Scholar 

  46. Go, T.F., Wahab, D.A., Hishamuddin, H.: Multiple generation life-cycles for product sustainability: the way forward. J. Clean. Prod. 95, 16–29 (2015)

    Article  Google Scholar 

  47. Alaviitala, T., Mattila, T.J.: Engineered nanomaterials reduce but do not resolve life cycle environmental impacts of power capacitors. J. Clean. Prod. 93, 347–353 (2015)

    Article  Google Scholar 

  48. Kanda, W., Sakao, T., Hjelm, O.: Components of business concepts for the diffusion of large scaled environmental technology systems. J. Clean. Prod. 128, 156–167 (2016)

    Article  Google Scholar 

  49. ISO 14006:2011, Environmental management systems—guidelines for incorporating eco-design

    Google Scholar 

  50. ISO 14040:2006, Environmental management-life cycle assessment-principles and framework

    Google Scholar 

  51. Beckerman, W.: The chimera of ‘sustainable development’. Electron. J. Sustain. Dev. 1(1), 17–26 (2007)

    Article  Google Scholar 

  52. Blessing, L.T.M., Chakrabarti, A.: DRM, a Design Research Methodology. Springer, London (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramani Krishnaswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Krishnaswamy, R., Chandran, K.M. (2017). Connotations of Ecodesign: A Commentary on the State of Discourse. In: Chakrabarti, A., Chakrabarti, D. (eds) Research into Design for Communities, Volume 2. ICoRD 2017. Smart Innovation, Systems and Technologies, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3521-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3521-0_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3520-3

  • Online ISBN: 978-981-10-3521-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics