Skip to main content

Cellular Senescence and Biliary Disorders

  • Chapter
  • First Online:
Pathology of the Bile Duct
  • 1134 Accesses

Abstract

Cellular senescence is defined as a permanent growth arrest caused by several cellular injuries such as oncogenic mutations and oxidative stress. Interestingly, senescent cells are not only results of cellular damage but also may play important roles in modulating inflammation and carcinogenesis via production of senescence-associated secretory phenotypes (SASPs) including various cytokines and chemokines. Cellular senescence may be involved in the pathophysiology of various liver diseases including cholangiopathy, a category of chronic liver diseases in which cholangiocytes are affected. Primary biliary cholangitis (PBC) is a representative cholangiopathy in which cellular senescence participates in the acceleration of inflammation and progressive ductopenia. Cellular senescence may be due to dysregulated autophagy, which may cause autoimmune process via abnormal expression of mitochondrial antigen in PBC. An involvement of cellular senescence is also reported in other cholangiopathies such as primary sclerosing cholangitis and biliary atresia. Furthermore, “oncogene-induced senescence” (OIS) may participate in multistep carcinogenesis of cholangiocarcinoma. Cellular senescence could be promising targets for prevention, early diagnosis, and therapy of various cholangiopathies in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72. doi:10.1172/JCI64098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101. doi:10.1038/nature12347.

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y. Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol. 2005;205(4):451–9.

    Article  PubMed  Google Scholar 

  5. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology. 2008;48(1):186–95.

    Article  PubMed  Google Scholar 

  6. Nakanuma Y, Sasaki M, Harada K. Autophagy and senescence in fibrosing cholangiopathies. J Hepatol. 2015;62(4):934–45. doi:10.1016/j.jhep.2014.11.027.

    Article  CAS  PubMed  Google Scholar 

  7. Meng L, Quezada M, Levine P, Han Y, McDaniel K, Zhou T, Lin E, Glaser S, Meng F, Francis H, Alpini G. Functional role of cellular senescence in biliary injury. Am J Pathol. 2015;185(3):602–9. doi:10.1016/j.ajpath.2014.10.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436(7051):660–5.

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki M, Yamaguchi J, Itatsu K, Ikeda H, Nakanuma Y. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol. 2008;215(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol. 2010;53(2):318–25. doi:10.1016/j.jhep.2010.03.008.

    Article  PubMed  Google Scholar 

  11. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.

    Article  CAS  PubMed  Google Scholar 

  12. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.

    Article  CAS  PubMed  Google Scholar 

  14. Lazaridis KN, LaRusso NF. The cholangiopathies. Mayo Clin Proc. 2015;90(6):791–800. doi:10.1016/j.mayocp.2015.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Portmann B, Nakanuma Y. Diseases of the bile ducts. In: Pathology of the liver. London: Churchill Livingsotone; 2007.

    Google Scholar 

  16. Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014;59(6):2263–75. doi:10.1002/hep.26993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gutierrez-Reyes G, del Carmen Garcia de Leon M, Varela-Fascinetto G, Valencia P, Perez Tamayo R, Rosado CG, Labonne BF, Rochilin NM, Garcia RM, Valadez JA, Latour GT, Corona DL, Diaz GR, Zlotnik A, Kershenobich D. Cellular senescence in livers from children with end stage liver disease. PLoS One. 2010;5(4):e10231. doi:10.1371/journal.pone.0010231.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sasaki M, Matsubara T, Kakuda Y, Sato Y, Nakanuma Y. Immunostaining for polycomb group protein EZH2 and senescent marker p16INK4a may be useful to differentiate cholangiolocellular carcinoma from ductular reaction and bile duct adenoma. Am J Surg Pathol. 2014;38(3):364–9. doi:10.1097/PAS.0000000000000125.

    Article  PubMed  Google Scholar 

  19. Sasaki M, Nakanuma Y. Cellular senescence in biliary pathology. Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions. Histol Histopathol. 2015;30(3):267–75.

    PubMed  Google Scholar 

  20. Sasaki M, Nakanuma Y. New concept: cellular senescence in pathophysiology of cholangiocarcinoma. Expert Rev Gastroenterol Hepatol. 2016;10(5):625–38. doi:10.1586/17474124.2016.1133291.

    Article  CAS  PubMed  Google Scholar 

  21. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sasaki M, Ikeda H, Sato Y, Nakanuma Y. Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am J Pathol. 2006;169(3):831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, Ohta T, Nakanuma Y. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest. 2008;88(8):873–82.

    Article  CAS  PubMed  Google Scholar 

  24. Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, Wilkens L, Destro A, Fiamengo B, Manns MP, Roncalli M, Rudolph KL. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45(4):968–76.

    Article  CAS  PubMed  Google Scholar 

  25. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meeker AK, Gage WR, Hicks JL, Simon I, Coffman JR, Platz EA, March GE, De Marzo AM. Telomere length assessment in human archival tissues: combined telomere fluorescence in situ hybridization and immunostaining. Am J Pathol. 2002;160(4):1259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9(17):939–45.. Doi:S0960-9822(99)80420-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.. Doi:08-PLBI-RA-2566 [pii] 10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  29. White E, Lowe SW. Eating to exit: autophagy-enabled senescence revealed. Genes Dev. 2009;23(7):784–7.. Doi:23/7/784 [pii] 10.1101/gad.1795309

    Article  CAS  PubMed  Google Scholar 

  30. Kumar V, Abbas A, Aster J. Cell injury, cell death, and adaptation. In: Kumar V, Abbas A, Aster J, editors. Robbins basic pathology. 9th ed. Philadelphia: Elsevier; 2013. p. 1–18.

    Google Scholar 

  31. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.. Doi:nature06639 [pii] 10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–6. doi:10.1038/35056522.

    Article  CAS  PubMed  Google Scholar 

  33. Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. J Cell Biol. 2010;189(6):925–35.. Doi:jcb.201002021 [pii] 10.1083/jcb.201002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.. Doi:nature09782 [pii] 10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009;23(7):798–803.. Doi:gad.519709 [pii] 10.1101/gad.519709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Invest. 2010;90(6):835–43.. Doi:labinvest201056 [pii] 10.1038/labinvest.2010.56

    Article  CAS  PubMed  Google Scholar 

  37. Lunz 3rd JG, Contrucci S, Ruppert K, Murase N, Fung JJ, Starzl TE, Demetris AJ. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol. 2001;158(4):1379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanada Y, Kawano Y, Miki A, Aida J, Nakamura K, Shimomura N, Ishikawa N, Arai T, Hirata Y, Yamada N, Okada N, Wakiya T, Ihara Y, Urahashi T, Yasuda Y, Takubo K, Mizuta K. Maternal grafts protect daughter recipients from acute cellular rejection after pediatric living donor liver transplantation for biliary atresia. Transpl Int. 2014;27(4):383–90. doi:10.1111/tri.12273.

    Article  PubMed  Google Scholar 

  39. Yamaguchi J, Sasaki M, Harada K, Zen Y, Sato Y, Ikeda H, Itatsu K, Yokoyama Y, Ando H, Ohta T, Kubota A, Shimizu K, Nimura Y, Nagino M, Nakanuma Y. Papillary hyperplasia of the gallbladder in pancreaticobiliary maljunction represents a senescence-related lesion induced by lysolecithin. Lab Invest. 2009;89(9):1018–31. doi:10.1038/labinvest.2009.65.

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki M, Ikeda H, Yamaguchi J, Miyakoshi M, Sato Y, Nakanuma Y. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. Am J Clin Pathol. 2010;133(2):212–23. doi:10.1309/AJCPWMX47TREYWZG.

    Article  PubMed  Google Scholar 

  41. Chiba M, Sasaki M, Kitamura S, Ikeda H, Sato Y, Nakanuma Y. Participation of bile ductular cells in the pathological progression of non-alcoholic fatty liver disease. J Clin Pathol. 2011;64(7):564–70. doi:10.1136/jcp.2011.090175.

    Article  PubMed  Google Scholar 

  42. Portmann B, Nakanuma Y. Diseases of the bile ducts. In: Burt A, Portman BC, Ferrell LD, eds. Pathology of the liver. 5th ed. London: Churchill Livingstone; 2007. p. 517–81.

    Google Scholar 

  43. Nakanuma Y, Ohta G. Histometric and serial section observations of the intrahepatic bile ducts in primary biliary cirrhosis. Gastroenterology. 1979;76(6):1326–32.

    CAS  PubMed  Google Scholar 

  44. Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, Ma X, Mackay IR, Pares A, Tanaka A, Vierling JM, Poupon R. Changing nomenclature for PBC: from ‘cirrhosis’ to ‘cholangitis’. Hepatology. 2015;62(5):1620–2. doi:10.1002/hep.28140.

    Article  PubMed  Google Scholar 

  45. Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, Ma X, Mackay IR, Pares A, Tanaka A, Vierling JM, Poupon R. Changing nomenclature for PBC: from ‘cirrhosis’ to ‘cholangitis’. J Hepatol. 2015;63(5):1285–7. doi:10.1016/j.jhep.2015.06.031.

    Article  PubMed  Google Scholar 

  46. Sasaki M, Ikeda H, Nakanuma Y. Activation of ATM signaling pathway is involved in oxidative stress-induced expression of mito-inhibitory p21(WAF1/Cip1) in chronic non-suppurative destructive cholangitis in primary biliary cirrhosis: an immunohistochemical study. J Autoimmun. 2008;31(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  47. Sasaki M, Ikeda H, Sato Y, Nakanuma Y. Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. Free Radic Res. 2008;42(7):625–32.

    Article  CAS  PubMed  Google Scholar 

  48. Serrano M, Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol. 2001;13(6):748–53.

    Article  CAS  PubMed  Google Scholar 

  49. Demetris A. Immunopathology of the human biliary tree. In: Sirica A, Longnecker D, editors. Biliary and Pancreatic ductal epithelia. New York: Marcel Dekker Inc.; 1997. p. 127–80.

    Google Scholar 

  50. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Chemokine-chemokine receptor CCL2-CCR2 and CX3CL1-CX3CR1 axis may play a role in the aggravated inflammation in primary biliary cirrhosis. Dig Dis Sci. 2014;59(2):358–64. doi:10.1007/s10620-013-2920-6.

    Article  CAS  PubMed  Google Scholar 

  51. Alvaro D, Mancino MG, Glaser S, Gaudio E, Marzioni M, Francis H, Alpini G. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology. 2007;132(1):415–31.

    Article  CAS  PubMed  Google Scholar 

  52. Shimoda S, Harada K, Niiro H, Yoshizumi T, Soejima Y, Taketomi A, Maehara Y, Tsuneyama K, Nakamura M, Komori A, Migita K, Nakanuma Y, Ishibashi H, Selmi C, Gershwin ME. Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells. Hepatology. 2008;47(3):958–65. doi:10.1002/hep.22102.

    Article  CAS  PubMed  Google Scholar 

  53. Tsuneyama K, Harada K, Yasoshima M, Hiramatsu K, Mackay CR, Mackay IR, Gershwin ME, Nakanuma Y. Monocyte chemotactic protein-1, -2, and -3 are distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: implications for pathogenesis. J Pathol. 2001;193(1):102–9.. Doi:10.1002/1096-9896(2000)

    Article  CAS  PubMed  Google Scholar 

  54. Isse K, Harada K, Zen Y, Kamihira T, Shimoda S, Harada M, Nakanuma Y. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology. 2005;41(3):506–16. doi:10.1002/hep.20582.

    Article  CAS  PubMed  Google Scholar 

  55. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Autophagy may precede cellular senescence of bile ductular cells in ductular reaction in primary biliary cirrhosis. Dig Dis Sci. 2012;57(3):660–6. doi:10.1007/s10620-011-1929-y.

    Article  PubMed  Google Scholar 

  56. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int. 2012;32(3):487–99. doi:10.1111/j.1478-3231.2011.02656.x.

    CAS  PubMed  Google Scholar 

  57. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int. 2013;33(2):312–20. doi:10.1111/liv.12049.

    Article  PubMed  Google Scholar 

  58. Sasaki M, Yoshimura-Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol. 2015;50(9):984–95. doi:10.1007/s00535-014-1033-0.

    Article  PubMed  Google Scholar 

  59. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int. 2013;33(2):312–20. doi:10.1111/liv.12049.

    Article  PubMed  Google Scholar 

  60. Tabibian JH, O’Hara SP, Trussoni CE, Tietz PS, Splinter PL, Mounajjed T, Hagey LR, LaRusso NF. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63(1):185–96. doi:10.1002/hep.27927.

    Article  CAS  PubMed  Google Scholar 

  61. Demetris AJ, Markus BH, Saidman S, Fung JJ, Makowka L, Graner S, Duquesnoy R, Starzl TE. Isolation and primary cultures of human intrahepatic bile ductular epithelium. In Vitro Cell Dev Biol. 1988;24(5):464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blakolmer K, Seaberg EC, Batts K, Ferrell L, Markin R, Wiesner R, Detre K, Demetris A. Analysis of the reversibility of chronic liver allograft rejection implications for a staging schema. Am J Surg Pathol. 1999;23(11):1328–39.

    Article  CAS  PubMed  Google Scholar 

  63. Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS, Jan YY, Huang SF, Nimura Y, Nakanuma Y. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct – an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol. 2006;44(2):350–8.

    Article  CAS  PubMed  Google Scholar 

  64. Nakanuma Y, Curado MP, Franceschi S, Gores GJ, Paradis V, Sripa B, Tsui WMS, Wee A. Intrahepatic cholangiocarcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumours of the digenstive system. 4th ed. Lyon: IARC Press; 2010. p. 217–24.

    Google Scholar 

  65. Nakanuma Y, Sasaki M, Terada T, Harada K. Intrahepatic peribiliary glands of humans. II Pathological spectrum. J Gastroenterol Hepatol. 1994;9:80–6.

    Article  CAS  PubMed  Google Scholar 

  66. Terada T, Nakanuma Y. Cell kinetics analyses and expression of carcinoembryonic antigen, carbohydrate antigen 19-9 and DU-Pan-2 in hyperplastic, preneoplastic and neoplastic lesions of intrahepatic bile ducts in hepatolithiasis. Virshow Arch A Pathol Anat Histopathol. 1992;420(4):327–35.

    Article  CAS  Google Scholar 

  67. Sasaki M, Nakanuma Y, Kim Y. Characterization of apomicin expression in intrahepatic cholangio-carcinomas ans their precursor lesions: an immunohistochemical study. Hepatology. 1996;24:1074–8.

    Article  CAS  PubMed  Google Scholar 

  68. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer. 2013;119(9):1669–74. doi:10.1002/cncr.27955.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoko Sasaki MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sasaki, M. (2017). Cellular Senescence and Biliary Disorders. In: Nakanuma, Y. (eds) Pathology of the Bile Duct. Springer, Singapore. https://doi.org/10.1007/978-981-10-3500-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3500-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3499-2

  • Online ISBN: 978-981-10-3500-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics