Skip to main content

Bacterial Probiotics: A Truly Green Revolution

  • Chapter
  • First Online:

Abstract

Throughout history, the evolution and progress of all human civilizations have been closely linked to the evolution and development of agriculture, since this is the basis of food production to sustain population and ensure social stability.

At the beginning of the twentieth century, due to great advances in medicine, world population increased significantly. This fact was derived to a situation in which the need to significantly increase the ability to produce food was necessary in order to feed all those people. And so, the Green Revolution in the 1960s–1980s was derived in a great increase of crops yields, saving many millions of people from starvation. One of the key factors in the Green Revolution was the application of synthetic fertilizers and pesticides. Despite obvious benefit of these products in the amount of food produced, chemical fertilizers and pesticides have many negative impacts in health and environment.

Many bacterial strains have been described as plant probiotics, and, by improving availability of nutrients and plant health, they produce an increase in crops yields in an eco-friendly manner. The growing concern about protecting environment, human health, and the need to produce more food with the limited resources for an exponentially growing population in the Earth is making that many worldwide companies are increasingly producing and commercializing bacterial-based biofertilizers, and the plant probiotics market is growing all around the world – the new Green Revolution is here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abela J and Valenzuela R (2007) Situación de los cultivos leguminosos y los Biofertilizantes en Bolivia. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67

    Google Scholar 

  • Abu Mweis SS, Jones PJ (2008) Cholesterol-lowering effect of plant sterols. Curr Artheroscl Rep 10(6):467–472

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2009a) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12(4):217–226

    Article  Google Scholar 

  • Ahemad M, Khan MS (2009b) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82(6):761–766

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010a) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29(4):325–329

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pesticide Biochem Physiol 98(2):183–190

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010c) Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67(4):423–429

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010d) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60(4):735–745

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010e) Improvement in the growth and symbiotic attributes of fungicide-stressed chickpea plants following plant growth promoting fungicide-tolerant Mesorhizobium inoculation. Afr J Basic Appl Sci 2(3–4):111–116

    Google Scholar 

  • Ahemad M, Khan MS (2011a) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea–Rhizobium symbiosis. Sci Hortic 129(2):266–272

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011b) Plant-Growth-Promoting fungicide-tolerant rhizobium improves growth and symbiotic characteristics of lentil (Lens esculentus) in fungicide-applied soil. J Plant Growth Regul 30(3):334–342

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahirwar NK, Gupta G, Singh V, Rawlley RK, Ramana S (2015) Influence on growth and fruit yield of tomato (Lycopersicon esculentum Mill.) plants by inoculation with Pseudomonas fluorescence (SS5): possible role of plant growth promotion. Int J Curr Microbiol App Sci 4:720–730

    Google Scholar 

  • Alam F, Bhuiyan MA, Alan SS, Waghmode TR, Kim PJ, Lee YB (2015) Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil. Biosci Biotechnol Biochem 79:1660–1668

    Article  CAS  PubMed  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40(11):2771–2779

    Article  CAS  Google Scholar 

  • Ang J, Banerjee R and Madsen J (2010) Innovation, technological change and the British Agricultural Revolution. Centre for Applied Macroeconomic Analysis. The Australian National University, CAMA Working Paper 11/2010

    Google Scholar 

  • Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch AM (2014) Plant-Associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS ONE 9(1): e83779. doi:10.1371/journal.pone.0083779

  • Araus J, Li J, Parry M, Wang J (2014) Phenotyping and other breeding approaches for a New Green Revolution. J Integr Plant Biol 56:422–424

    Article  PubMed  Google Scholar 

  • Arora NK, Tiwari S, Singh R (2014) Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainable agriculture. J Plant Pathol Microbiol 5:229

    Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36(10):766–771

    Article  CAS  Google Scholar 

  • Bao Z, Sasaki K, Okubo T, Anda M, Hanzawa E, Kakizaki K, Sato T, Mitsui H, Minamisawa K (2013) Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 28:487–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, González LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51(2):262–266

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35(5):359–368

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378(1–2):1–33

    Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 7(11):1673–1685

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Google Scholar 

  • Berg G, Alavi M, Schmid M, Hartmann A (2013) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Molecular Microbial Ecology of the Rhizosphere, De Bruijn, FJ (Ed.). Wiley, New York, USA., ISBN-13, 1477764743, 1209–1216

    Google Scholar 

  • Bernabeu PR, Pistorio M, Torres-Tejerizo G, Estrada-De los Santos P, Galar ML, Boiardi JL, Luna MF (2015) Colonization and plant growth-promotion of tomato by Burkholderia tropica. Sci Hortic 191:113–120

    Article  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225

    Article  Google Scholar 

  • Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181–193

    Article  CAS  PubMed  Google Scholar 

  • Carpanetto D, Bianchini P (2011). Atlas histórico del mundo. Tikal-Susaeta Eds. Madrid, Spain. ISBN-13: 978-8499281247

    Google Scholar 

  • Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182(4118):1271–1272

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53

    Article  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol, 14(6):277–286

    Google Scholar 

  • Cirera X, Masset E. Income distribution trends and future food demand. (2010) Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554):2821–34.

    Google Scholar 

  • Conceição P, Levine S, Lipton M, Warren-Rodríguez A (2016) Toward a food secure future: ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 60:1–9

    Article  Google Scholar 

  • Cong PT, Dunga TD, Hiena TM, Hien NT, Choudhury AT, Kecskés ML, Kennedy IR (2009) Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61

    Article  CAS  Google Scholar 

  • Conway G, Barbie E (1988) After the Green Revolution: sustainable and equitable agricultural development. Futures 20:651–670

    Article  Google Scholar 

  • Corvalan D, Dubois M, Medana M, Perticari A, Racca R and Ruiz O (2007) Situación actual y perspectivas del mercado de semillas y biofertilizantes en la Argentina. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67

    Google Scholar 

  • Cuevas-Rodríguez EO, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Lila MA (2010) Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.) J Agric Food Chem 58(12):7458–7464

    Article  PubMed  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Begollín RA, Megías M, Ollero FJ, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant and Soil 328(1–2):483–493

    Article  CAS  Google Scholar 

  • Deans SG, Svoboda KP (1990) The antimicrobial properties of marjoram (Origanum majorana L.) volatile oil. Flavour Fragr J 5(3):187–190

    Article  Google Scholar 

  • Díez-Méndez A, Menéndez E, García-Fraile P, Celador-Lera L, Rivas R, Mateos PF (2015) Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis 67:1351–1357

    Article  CAS  Google Scholar 

  • DiMascio P, Aaiser S, Sies H (1989) Lycopene as the most effective biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  CAS  Google Scholar 

  • Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crc Cr Rev Plant Sci 25(5):417–440

    Article  CAS  Google Scholar 

  • Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Agric Food Chem 83(5):369–382

    Article  CAS  Google Scholar 

  • Dursun A, Ekinci M, Dönmez MF (2010) Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) Pak J Bot 42:3349–3356

    CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol. 67:51–60

    Google Scholar 

  • Estrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS & Hirsch AM (2016) To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol. 66:1303–1314

    Google Scholar 

  • FAOSTAT (2007) United Nations Food and Agriculture Organization, Rome. FAOSTAT. http://faostat.fao.org/default.aspx

  • Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. App Soil Ecol 72:103–108

    Article  Google Scholar 

  • Flores-Félix JD, Ménendez E, Rivera LP, Marcos-García M, Martínez-Molina P, Mateos PF, Velázquez E, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 000:1–7

    Google Scholar 

  • Flores-Félix JD, Silva LR, Rivera LP, Marcos-García M, García-Fraile P, Martínez-Molina E, Mateos PF, Velázquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4):e0122281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem, 41(1):125–134

    Google Scholar 

  • García-Fraile P, Robledo M, Ramírez-Bahena M-H, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix Á, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5):e38122

    Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  CAS  Google Scholar 

  • Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10(11):e0142639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16(2):109–126

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer I 91(4):317–331

    Article  CAS  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retino in relation to risk of prostate cancer. J Natl Cancer I 87(23):1767–1776

    Article  CAS  Google Scholar 

  • Gomez M, Barrett C, Raney T et al (2013) Post-green revolution food systems and the triple burden of malnutrition. Food Policy 42:129–138

    Article  Google Scholar 

  • Group FBP, editor (2006) Biofertilizer Manual. Tokyo, Japan: Japan Atomic Industrial Forum.

    Google Scholar 

  • Gupta AK, Savopoulos CG, Ahuja J, Hatzitolios AI (2011) Role of phytosterols in lipid-lowering: current perspectives. QJM 104(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Hale L, Luth M, Kenney R, Crowley D (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199

    Article  Google Scholar 

  • Hale L, Luth M, Crowley D (2015) Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem 81:228–235

    Article  CAS  Google Scholar 

  • Hanson AD, Gregory IIIJF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125

    Article  CAS  PubMed  Google Scholar 

  • Hassimotto N, Lajolo FM (2011) Antioxidant status in rats after long-term intake of anthocyanins and ellagitannins from blackberries. J Agric Food Chem 91(3):523–531

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB (1990) Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiol 93:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hummer KE (2010) Rubus pharmacology: antiquity to the present. Hort Sci 45(11):1587–1591

    Google Scholar 

  • Hungria M and Campo R (2007) Inoculantes Microbianos: Situação no Brasil. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Una Denad Internacional, S.A. Montevideo, Uruguay

    Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Imran A, Mirza MS, Shah TM, Malik KA, Hafeez FY (2015) Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol 6:895

    Article  Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61

    Article  PubMed  Google Scholar 

  • Isfahani FM, Besharati H (2012) Effect of biofertilizers on yield and yield components of cucumber. J Biol Earth Sci 2:83–92

    Google Scholar 

  • Joshi P, Rayalu S, Bansiwal A, Juwarkar AA (2007) Surface modified zeolite, a novel carrier material for Azotobacter chroococcum. Plant and Soil 296(1–2):151–158

    Article  CAS  Google Scholar 

  • Kamilova F, de Bruyne R (2013) Plant growth promoting microorganisms: the road from an academically promising result to a commercial product. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1-2. Wiley, Hoboken, NJ, pp 677–686

    Chapter  Google Scholar 

  • Kamilova F, Okon Y, de Weert S, Hora K (2015) Commercialization of microbes: manufacturing, inoculation, best practice for objective field testing and registration. In Principles of plant-microbe interactions, Springer I. P. 319-327

    Google Scholar 

  • Khush G (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science, 341(6147):759–765

    Google Scholar 

  • Kumar M, Mishra S, Dixit V, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.) Plant Sign Behave 11(1)

    Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Natural Products. Springer, Berlin Heidelberg, pp 1543–1580

    Chapter  Google Scholar 

  • Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK (2015) Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol Eng 81:272–277

    Article  Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Article  Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansotra P, Sharma P, Sharma S (2015) Bioaugmentation of Mesorhizobium cicer, Pseudomonas spp. and Piriformospora indica for Sustainable Chickpea Production. Physiology and Molecular Biology of Plants 21(3):385–393

    Google Scholar 

  • Marin-Loaiza J C and Cespedes C L (2007) Volatile compounds from plants. Origin, emission, effects, analysis and agro applications

    Google Scholar 

  • Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014a) Micromonospora from nitrogen-fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep. 4:6389. DOI:10.1038/srep06389

  • Martínez-Hidalgo P, Olivares J, Delgado A, Bedmar E, Martínez-Molina E (2014b) Endophytic Micromonospora from Medicago sativa are apparently not able to fix atmospheric nitrogen. Soil Biol Biochem. 74:201–203

    Google Scholar 

  • Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol. 6:922. doi:10.3389/fmicb.2015.00922

  • Moreno-Gomez B, Rascon-Cruz Q and Aguado-Santacruz G (2012) Manejo y Calidad de los Biofertilizantes. In Aguado-Santacruz G (ed). Introducción al Uso y Manejo de los Biofertilizantes en la Agricultura. INIFAP/SAGARPA, México. pp 115–150

    Google Scholar 

  • Moreno-Sarmiento N, Moreno-Rodríguez L and Uribe-Vélez D (2007) Biofertilizantes para la Agricultura en Colombia. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 38–45

    Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the ß-subclass of Proteobacteria. Lett Nature. 411:948–950

    Google Scholar 

  • Mulas D, García-Fraile P, Carro L, Ramírez-Bahena M-H, Casquero P, Velázquez E, Gonzalez-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293

    Article  CAS  Google Scholar 

  • Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269(18):13685–13688

    CAS  PubMed  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5(10):1108–1116

    Google Scholar 

  • Peng J, Richards D, Hartley N, Murphy G et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Agric Food Chem 80(7):939–966

    Article  CAS  Google Scholar 

  • Pingali P (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR co-inoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49

    Article  Google Scholar 

  • Ramakrishnan K, Selvakumar G (2012) Effect of biofertilizers on enhancement of growth and yield on tomato (Lycopersicum esculentum Mill.) Int J Res Bot 2:20–23

    Google Scholar 

  • Rao AV, Agarwal S (1998) Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 31(3):199–203

    Article  CAS  PubMed  Google Scholar 

  • Rao AV, Waseem Z, Agarwal S (1998) Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res Int 31(10):737–741

    Google Scholar 

  • Rodrigues AC, Vendruscolo CT, da Silveira Moreira A, Santana MVS, de Paula Oliveira JE, Bonifacio A, Figueiredo MADVB (2015) Rhizobium tropici exopolysaccharides as carriers improve the symbiosis of cowpea-Bradyrhizobium-Paenibacillus. Afr J Microbiol Res 9(37):2037–2050

    Article  CAS  Google Scholar 

  • Romano S, Aujoulat F, Jumas-Bilak E, Masnou A, Jeannot JL, Falsen E, Teyssier C (2009) Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol, 9(1):1

    Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34(1):3–21

    Article  CAS  Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49(10):1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Sayer J, Cassman K (2013) Agricultural innovation to protect the environment. Proc Natl Acad Sci U S A 110:8345–8348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33(4):751–765

    Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2014) Biosafety of novel bioinoculants. J Biofertil Biopestici. 5(2):1000154. DOI: 10.4172/2155-6202.1000145

  • Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34

    Article  CAS  Google Scholar 

  • Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A, Valentao P, Andrade PB (2014) Inoculation of the nonlegume Capsicum annuum L. with Rhizobium Strains. II. Changes in sterols, triterpenes, fatty acids, and volatile compounds. J Agric Food Chem 62(3):565–573

    Article  CAS  PubMed  Google Scholar 

  • Skorov G (1973) The green revolution and social progress. World Dev 1:13–21

    Article  Google Scholar 

  • Soby S (2013) The end of the green revolution. J Agr Environ Ethic 26:537–546

    Article  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia, Methods in legume-Rhizobium technology. Springer, New York

    Book  Google Scholar 

  • Song X, Liu M, Wu D, Griffiths BS, Jiao J, Li H, Hu F (2015) Interaction matters: synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl Soil Ecol 89:25–34

    Article  Google Scholar 

  • Stahl W, Sies H (1996) Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 336(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res, 65(2): 249–258

    Google Scholar 

  • Suh JS, Jiarong P, Toal PV (2006) Quality control of biofertilizers. Biofert Manual:112–115

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901

    Article  Google Scholar 

  • Sun D, Hale L, Crowley D (2016) Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biol Fertil Soils 52(4):515–522

    Article  CAS  Google Scholar 

  • Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotech Bioch 71(6):1387–1404

    Article  CAS  Google Scholar 

  • Toor RK, Savage GP (2005) Antioxidant activity in different fractions of tomatoes. Food Res Int 38(5):487–494

    Google Scholar 

  • Trienekens J, Zuurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113(1):107–122

    Article  Google Scholar 

  • Tripathi S, Das A, Chandra A, Varma A (2015) Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World J Microbiol Biotechnol 31(2):337–344

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martínez-Molina E, Velazquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol. 71:1318–1327

    Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Günes A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish J Agric Forestry 38(3):327–333

    Article  CAS  Google Scholar 

  • Vander Gheynst JS, Scher H, Guo HY (2006) Design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotech 2(3):213–219

    Article  CAS  Google Scholar 

  • Vassilev NM, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996

    Article  CAS  PubMed  Google Scholar 

  • Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M (2016) Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol 6:1514. DOI: 10.3389/fmicb.2015.01514

  • Wani P, Khan M, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica 55(3):315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. (2010). Food Chem Toxicol 48:3262–3267

    Google Scholar 

  • Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 3(1):79–92

    Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetales: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zanden J (1991) The first green revolution: the growth of production and productivity in European agriculture, 1870-1914. Econ Hist Rev 44:215–239

    Article  Google Scholar 

  • Zúñiga D (2007) Leguminosas y producción de biofertilizantes en el Perú. In: Izaguirre-Mayoral M, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. CYTED, BIOFAG, Uruguay. pp 61–67

    Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol. 57:784–788

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula García-Fraile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

García-Fraile, P. et al. (2017). Bacterial Probiotics: A Truly Green Revolution. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_6

Download citation

Publish with us

Policies and ethics