Skip to main content

Phosphate Biofertilizers as Renewable and Safe Nutrient Suppliers for Cropping Systems: A Review

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstract

Sustainable agriculture highly depends on soil microorganisms to supply essential nutrients for plants and circulate the nutrient cycles in cropping systems. These microorganisms which are commercially formulated and briefly named “biofertilizers” can significantly reduce fossil fuel consumption, environmental degradation, and production cost related to agriculture. Phosphate biofertilizer is one of the most important groups of these beneficial microorganisms which plays a notable role in nutrient preparation for crops. Although these biofertilizers are usually known as phosphate suppliers for cropping systems, they can also provide other macro- and micronutrients to crops. Fungi and bacteria form two major groups of phosphate biofertilizers which can live freely or as symbiont organisms in agricultural soils. Mycorrhiza is a symbiont fungus which increases plant uptake of phosphate, nitrogen, and micronutrients and improves soil structure via formation of an extensive and dense mycelial network connected to plant roots. In contrast, phosphate solubilizing microorganisms are usually free living and able to solubilize insoluble phosphate compounds in soil mainly via releasing a wide range of organic acids and chelating metabolites. However, the effectiveness of these microorganisms is significantly influenced by edaphic factors and field management practices. For example, tillage as a usual practice in most of the cropping systems has negative effects on the absence and activity of mycorrhizal fungi. Application of chemical fertilizers which is another routine operation in modern agriculture also notably reduces the survival and effectiveness of phosphate biofertilizers. This review article presents the results on the main phosphate biofertilizers which can potentially be applied in sustainable agriculture, their action mechanisms, and important factors influencing their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alam S, Khalil S, Najma A, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8:41–45

    Article  Google Scholar 

  • Ames RN, St. Porter LK, John TV, Reid CPP (1984) Nitrogen sources and ‘A’ values for vesicular- arbuscular and non-mycorrhizal sorghum grown at three rates of 15N-ammonium sulphate. New Phytol 97:269–276

    Article  CAS  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) Effects of phosphorus on the morphology of VA mycorrhizal root-system of leek (Allium porrum L). Plant Soil 119:334–336

    Article  CAS  Google Scholar 

  • Antunes V, Cardoso EJBE (1991) Growth and nutrient status of citrus plants as influenced by mycorrhiza and phosphorus application. Plant Soil 131:11–19

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azcón-Aquilar C, Alba C, Montilla M, Barea JM (1993) Isotopic (15N) Evidence of the use of less available N forms by VA mycorrhizas. Symbiosis 15:39–48

    Google Scholar 

  • Bago B, Azcon-Aguilar C, Goulet A, Piche Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388

    Article  Google Scholar 

  • Bajwa R, Read DJ (1985) The biology of mycorrhiza in the ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101:459–467

    Article  CAS  Google Scholar 

  • Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the ericaceae X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101:469–486

    Article  CAS  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, El-Atrach F, Azcon R (1991) The role of VA mycorrhizas in improving plant N acquisition from soil as assessed with 15N. The use of stable isotopes in plant nutrition. In: Fitton C (ed) Soil fertility and environmental studies. Joint AIEA, FAO, Division, Vienna, pp 677–808

    Google Scholar 

  • Barker SJ, Tagu D, Dalpè G (1998) Regulation of root and fungal morphogenesis in mycorrhizal symbiosis. Plant Physiol 116:1201–1207

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriquea MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azorhizobium brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plant. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88:253–261

    Article  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhizal interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from root exudates. Mol Plant Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Burkert B, Robson A (1994) Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalpè Y, Monreal M (2004) Arbuscular mycorrhizae inoculum to support sustainable cropping systems. Crop Manag 3. doi:10.1094/CM-2004-0301-09-RV

  • Deinum B, Sulastri RD, Zeinab MHJ, Maassen A (1996) Effects of light intensity on growth, anatomy and forage quality of two tropical grasses (Brachiaria brizantha and Panicum maximum var. trichoglume). Neth J Agric Sci 44:111–124

    Google Scholar 

  • Dekkers TBM, van der Werff PA (2001) Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza 10:195–201

    Article  Google Scholar 

  • Dong M, Pierdominici MG (1995) Morphology and growth of stolons and rhizomes in three clonal grasses, as affected by different light supply. Vegetatio 116:25–32

    Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil–inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 17–46

    Google Scholar 

  • Garcia Junior O (1992) O enxofre e suas transformações microbianas. In: Cardoso E, Saito MT, Neves MCP (eds) Microbiologia do solo Campinas: SBCS, pp 243–255

    Google Scholar 

  • Garcia-Garrido JM, Garcia-Romera I, Ocampo JA (1992) Cellulase production by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytol 121:221–226

    Article  CAS  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1991) Pectolytic enzymes in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. FEMS Microbiol Lett 78:343–346

    Article  CAS  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Mining by microbe. Bio Technol 11:1250–1254

    CAS  Google Scholar 

  • Goulart BL, Demchak K, Yang WQ (1995) Organic matter and nitrogen level effects on mycorrhizal infection in ‘Bluecrop’ highbush blueberry plants. J Small Fruit Viticult 3:151–164

    Article  Google Scholar 

  • Goulart BL, Demchak K, Yang WQ (1996) Effect of cultural practices on field grown ‘Bluecrop’ highbush blueberries, with emphasis on mycorrhizal infection levels. Acta Hortic 46:271–278

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Doud DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal Symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guissou T, Bâ AM, Guinko S, Plenchette C, Duponnois R (2001) Mobilisation des phosphates naturels de kodijari par des jujubiers (Ziziphus mauritiana Lam.) mycorhizes dans un sol acidifié avec de la tourbe. Fruits 56:261–269

    Article  Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Hepper CM (1983) The effect of nitrate and phosphate on the vesicular–arbuscular mycorrhizal infection of lettuce. New Phytol 93:389–399

    Article  CAS  Google Scholar 

  • Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Search 2:226–246

    Article  Google Scholar 

  • Ho WC, Ko WH (1985) Effect of environmental edaphic factors. Soil Biol Biochem 17:167–170

    Article  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816–822

    Article  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 297–324

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  PubMed  Google Scholar 

  • Kabir Z, O’Halloran IP, Widden P, Hamel C (1998) Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza 8:53–55

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS (2009) Phosphorus solubilising bacteria: occurance, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Koide TR, Shreinner PR (1992) Regulation of vesicular arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    Article  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 105:9823–9828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    Article  CAS  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil Sci 68:261–270

    Article  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant Soil 110:3–8

    Article  CAS  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH et al (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Shi GX, Mao L, Cheng G, Jiang SJ et al (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  CAS  Google Scholar 

  • Matsumura A, Taniguchi S, Yamawaki K, Hattori R, Tarui A, Yano K, Daimon H (2013) Nitrogen uptake from amino acids in maize through arbuscular mycorrhizal symbiosis. Am J Plant Sci 4:2290–2294

    Article  CAS  Google Scholar 

  • Matsumura H, Umezawa K, Takeda K, Sugimoto N, Ishida T, Samejima M, Ohno H, Yoshida M, Higarashi K, Nakamura N (2014) Discovery of a eukaryotic pyrroloquinoline quinone dependent oxidoreductase belonging to new auxiliary activity family in the database of carbohydrate-active enzymes. PLoS One 9:e104851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGonigle TP, Miller MH (1996) Mycorrhizae, P absorption and yield of maize in response to tillage. Soil Sci Soc Am J 60:1856–1861

    Article  CAS  Google Scholar 

  • Michelsen A, Schmidt IK, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Article  PubMed  Google Scholar 

  • Miller MH (2000) Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Can J Plant Sci 80:47–52

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Behtlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication 54. ASA, Madison, pp 29–44

    Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular-arbuscular mycorrhizas as influence by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255

    Article  Google Scholar 

  • Mohammadi GR, Chatrnour S, Jalali-honarmand S, Kahrizi D (2015) The effects of planting arrangement and phosphate biofertilizer on soybean under different weed interference periods. Acta Agric Slov 105:313–322

    Article  Google Scholar 

  • Morton JB (1990) Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): their role in macro and micro evolutionary processes. Mycotaxon 37:493–515

    Google Scholar 

  • Motsara MR, Bhattacharyya PB, Srivastava B (1995) Biofertilizers their description and characteristics. In: Biofertilizer technology, marketing and usage, a sourcebook- cum-glossary, fertilizer development and consultation organisation 204–204, A Bhanot Corner, 1–2 Pamposh Enclave, New Delhi, 110048, pp 9–18

    Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2008) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil. World J Microb Biot 12:18–23

    Article  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101:4120–4124

    Article  CAS  PubMed  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  PubMed  CAS  Google Scholar 

  • Ozanne PG (1980) Phosphate nutrition of plants – general treatise. The role of phosphorus in agriculture. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) American Soc Agron Crop Sci Soc America, Soil Sci Soc America, Madison, pp 559–589

    Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836

    Article  CAS  PubMed  Google Scholar 

  • Peters S (2002) Mycorrhiza 101. Reforestation Technologies International, Salinas

    Google Scholar 

  • Raghuwanshi R (2012) Opportunities and challenges to sustainable agriculture in India. NEBIO 3:78–86

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–390

    Article  Google Scholar 

  • Read DJ, Leake JR, Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorous and sulphur utilization by fungi. Cambridge University Press, New York, pp 181–204

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Same BI, Robson AD, Abbott LK (1983) Phosphorus, soluble carbohydrates and endomycorrhizal infection. Soil Biol Biochem 15:593–597

    Article  CAS  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic/Elsevier, New York

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Son CL, Smith SE (1995) Mycorrhizal growth responses: interaction between photon irradiance and phosphorus nutrition. New Phytol 108:305–314

    Article  Google Scholar 

  • Stamford NP, Silva JA, Freitas ADS, Araujo Filho JT (2002) Effect of sulphur inoculated with Acidithiobacillus in a saline soil grown with Leucena and mimosa tree legumes. Bioresour Technol 81:53–59

    Article  CAS  PubMed  Google Scholar 

  • Stribley DP, Read DJ (1976) The biology of mycorrhiza in the ericaceae VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol 77:63–72

    Article  CAS  Google Scholar 

  • Subha Rao NS (1982) Advances in agricultural microbiology. In: Subha Rao NS (ed) Oxford and IBH Publ Co, pp 229–305

    Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765

    Article  Google Scholar 

  • Tisdall JM (1994) Possible role of soil microorganisms in aggregation in soils. Plant Soil 159:115–121

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Elsas JD, Van Overbeek LS, Fouchier R (1991) A specific marker pat for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant Soil 138:49–60

    Article  Google Scholar 

  • Van Veen JA, Leonard S, Van Overbeek LS, Van Ellsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol R 61:121–135

    Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineau IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829

    Article  CAS  Google Scholar 

  • Yang WQ, Goulart BL, Demchak K, Li Y (2002) Interactive effects of mycorrhizal inoculation and organic soil amendments on nitrogen acquisition and growth of highbush blueberry. J Am Soc Hortic Sci 127:742–748

    Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mohammadi, G. (2017). Phosphate Biofertilizers as Renewable and Safe Nutrient Suppliers for Cropping Systems: A Review. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_5

Download citation

Publish with us

Policies and ethics