Skip to main content

Arbuscular Mycorrhizal Fungi for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Arbuscular mycorrhizal fungi (AMF) have obligatory symbiotic relationship with more than 80% of terrestrial plant species. AMF symbiosis acclimatizes plants for their better survival, enhanced growth and development in biotic as well abiotic environment, thereby promoting sustainable growth and development of plants. Being highly competitive and better suited, plants with AMF association with ease tolerate environmental stress to face plethora of various biotic as well as abiotic changes. These fungal symbionts offer an eco-friendly biological sound substitute to chemical fertilizers and pesticides for managing both plant quality and quantity in agriculture, horticulture and forestry. AMF are now regarded as the cornerstone of sustainable agriculture; as such, there is a necessity to accelerate their integration in agricultural production systems. It becomes important now that soil scientists and agriculturalists pay due attention to the management of AMF in the formal way to increase, restore or maintain soil fertility which indirectly influences the growth and development of plant. Present review emphasizes the mycorrhizal symbiosis as a keystone to plant productivity and diversity because of their influence on almost all metabolic processes of plants and maintains and, in many cases, stimulates plant growth and development due to their diverse functionality/benefits to host plant, consolidated here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Fattah GM, Shabana YM (2002) Efficacy of the Arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root rot pathogen Rhizoctoniasolani. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz. J Plant Dis Prot 109(2):207–215

    Google Scholar 

  • Agarwal S, Koul KK, Lone R (2009) Arbuscular mycorrhizal fungi- essential partners in sustainable plant growth. In: Lakshman HC (ed) Bioinoculants for integrated plant growth. M D Publications Pvt Ltd, New Delhi, pp 53–76

    Google Scholar 

  • Agarwal S, Lone R, Farooq F, Shuab R, Koul KK (2013) In vitro establishment of Arbuscular mycorrhizal fungi (AMF) in cucumber (Cucumis sativus) roots. Adv Biores 4(4):155–159

    Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosyl flavonoid that stimulates Arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Akthar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97

    Google Scholar 

  • Al-Agel A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.) J Environ Qual 34:2181–2186

    Article  CAS  Google Scholar 

  • Al-Askar AA, Rashad YM (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common bean Fusarium root rot disease. Plant Pathol J 9:31–38

    Article  Google Scholar 

  • Alguacil M, Caravaca F, Diaz-Vivancos P, Hernandez JA, Roldan A (2006) Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 279:209–218

    Article  CAS  Google Scholar 

  • Al-Karaki G, McMicheal B, Zak J (2004) Field response of wheat to Arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat (Glomus fasciculatus, Glomus mosseae). New Phytol 93(1):67–76

    Google Scholar 

  • Arines J, Palma MJ, Vilarino A (1993) Comparison of protein patterns in non-mycorrhizal and vesicular-Arbuscular mycorrhizal roots of red clover. New Phytol 123:763–768

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between Arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Asrar AA, Elhindi KM (2010) Alleviation of drought stress of marigold (Tageteserecta) plants by using Arbuscular mycorrhizal fungi. Saudi J Biol Sci. doi:10.1016/j.sjbs.2010.06.007

  • Auge RM (2001) Water relations, drought and vesicular-Arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Auge RM, Scheikel KA, Warmple RL (1986) Osmotic adjustment in leaves of VA-mycorrhiza and non-mycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auge RM, Schekel KA, Wample RL (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99:291–302

    Article  CAS  Google Scholar 

  • Auge RM, Foster JG, Lasher WH, Stodola AW (1992) Symplastic sugar and free amino acid molality of Rosa roots with regarded to mycorrhizal colonization and drought. Symbiosis 12:1–17

    CAS  Google Scholar 

  • Azcon R, Peralvarez MC, Biro B, Roldan A, Ruiz-Lozano JM (2009) Antioxidant activities and metal acquisition in Mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosicagrowaste. Appl Soil Ecol 41:168–177

    Article  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an over view of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azcón-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of Arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandler K (eds) Mycorrhizal technology in agriculture. Birkäuser Verlag, Switzerland, pp 187–197

    Google Scholar 

  • Baas R, Kuiper D (1989) Effects of vesicular-Arbuscular mycorrhizal infection and phosphate on Plantago major spp. pleiosperma in relation to internal cytokinin concentrations. Physiol Plant 76:211–215

    Article  CAS  Google Scholar 

  • Bago B, Donaire JP, Azcón-Aguilar C (1997) ATPase activities of root microsomes from mycorrhizal sunflower (Helianthus annuus) and onion (Allium cepa) plants. New Phytol 236(2):305–311

    Article  Google Scholar 

  • Bagyaraj DJ (1984) Biological interactions with mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, New York, pp 131–153

    Google Scholar 

  • Bagyaraj DJ, Varma AK (1995) Interaction between VA mycorrhizal fungi and plants and their importance in sustainable agriculture in arid and semi arid tropics. Adv Microb Ecol 14:119–142

    Google Scholar 

  • Barea JM, Azcón R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bhat RP, Kaveriappa KM (1997) Occurrence of vesicular Arbuscular mycorrhizal fungi in the tubers of Colocasia esculenta (L.) Schott. Mycorrhiza News 9:12–13

    Google Scholar 

  • Biro B, Koves-Pechy K, Voros I, Takacs T, Eggenberg P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and Arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15:159–168

    Article  Google Scholar 

  • Bohra A, Mathur N, Bohra S, Singh J, Vyas A (2007) Influence of AM fungi on physiological changes in Terminalia arjuna L.: an endangered tree of Indian thar desert. Indian Forester 133(11):1558–1562

    Google Scholar 

  • Bolandnazar S, Hakiminia I (2013) Impact of Mycorrhizal Fungi on P acquisition, yield and water use efficiency of onion under regulated deficit irrigation. Res Plant Biol 3(1):321–328

    Google Scholar 

  • Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114(1):11–15

    Article  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of Arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bonfante-Fasolo P, Grippolo R (1984) Cytochemical and biochemical observations on the cell wall of the spore of Glomus epigaeum. Protoplasma 123:140–151

    Article  CAS  Google Scholar 

  • Borges RG, Chaney WR (1993) Solar irradiance and the development of endomycorrhizal green ash seedlings. Tree Physiol 13:227–238

    Article  CAS  PubMed  Google Scholar 

  • Borowicz VA (2001) Do Arbuscular mycorrhizal fungi alter plant-pathogen relations. Ecology 82:3057–3068

    Google Scholar 

  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208

    Article  Google Scholar 

  • Brachmann A, Parniske M (2006) The most important symbiosis on earth. Soil Biol 4:239

    Google Scholar 

  • Brundrett M, Beegher N, Dell B, Groov T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32

    Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of Arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd ed. Academic, London, p 578

    Google Scholar 

  • Cartmill AD, Valdez-Aguilar LA, Bryan DL, Alarcon A (2008) Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water. Sci Hortic 115:275–284

    Article  CAS  Google Scholar 

  • Celik S, Arcak S (2002) Effects of vesicular-arbuscular mycorrhizae on the growth and uptake of some heavy metals by oat (Avena Sativa L.). In: International conference on sustainable land use and management, Soil Science Society of Turkey, Çanakkale

    Google Scholar 

  • Charles P, Raj ADS, Kiruba S (2006) Arbuscular mycorrhizal fungi in the reclamation and restoration of soil fertility. Mycorrhiza News 18(2):13–14

    Google Scholar 

  • Chellappan P, Anitha Christy SA, Mahadevan A (2002) Multiplication of Arbuscular mycorrhizal fungi on roots. In: Mukerji KG, Manoharachary C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 285–297

    Google Scholar 

  • Cliquet JB, Stewart GR (1993) Ammonia assimilation in Zea mays L. infected with a vesicular-Arbuscular mycorrhizal fungus Glomus fasciculatum. Plant Physiol 101(3):865–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalpe Y (2005) Mycorrhizae: a potential tool for plant protection but not a panacea. Phytoprotection 86:53–59

    Article  Google Scholar 

  • David-Schwart R, Gadkar V, Wininger S, Bendov R, Gallic G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (Pmi2) mutant of tomato, resistant to Arbuscular mycorrhizal fungal colonization. Mol Plant Microbe Interact 16:382–388

    Article  Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration – response in gas exchange and water relations. Plant Physiol 87:45–53

    Article  CAS  Google Scholar 

  • Davies FT, Calderon C, Huaman Z (2005) Influence of Arbuscular mycorrhiza indigenous to Peru and a flavonoid on growth, yield and leaf elemental concentration of ‘Yungay’ potatoes (Solanum tuberosum L.) Hortic Sci 40(2):381–385

    Google Scholar 

  • Devi MC, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156

    Article  Google Scholar 

  • Duponnois R (2006) Bacteria helping mycorrhiza development. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 297–310

    Google Scholar 

  • Edwards D, Duckett JG, Richardson JB (1995) Hepatic characters in the earliest land plants. Nature 374:635–636

    Article  CAS  Google Scholar 

  • Elahi FE, Mridha MAU, Aminuzzaman FM (2010) Influence of AMF inoculation on growth, nutrient uptake, arsenic toxicity and chlorophyll content of eggplant grown in arsenic amended soil. Adv Nat Appl Sci 4(2):184–192

    CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micro propagated Chile Ancho pepper (Capsicum annuum) plantlets during acclimatization and post acclimatization. J Plant Physiol 160:1073–1083

    Article  CAS  PubMed  Google Scholar 

  • Fagbola O, Osonubi O, Mulongox K, Odunfa SA (2001) Effects of drought stress and Arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, Leucaena leucocephala (Lam). Dewit. In simulated eroded soil conditions. Mycorrhiza 11:215–223

    Article  Google Scholar 

  • Farahani HA, Valadabadi SA, Khalvati MA (2009) Interactive effects of P supply and drought on root growth of the mycorrhizal coriander (Coriandrum sativum L.) J Plant Breed Crop Sci 1(5):217–222

    CAS  Google Scholar 

  • Farzaneh M, Wichmann S, Vierheilig H, Kaul HP (2009) The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften 13:15–22

    Google Scholar 

  • Farzaneh M, Wichmann S, Vierheilig H, Kaul HP (2011) The effects of arbuscular mycorrhiza and nitrogen nutrition. Plant Soil Environ 57(10):465–470

    CAS  Google Scholar 

  • Ferrera-Cerrato R, Villerias SJ (1985) The VA endomycorrhiza and its effect of the development of three arboreous legumes. In: Proceedings of the Sixth North American Conference on Mycorrhizae, Bend, p 328

    Google Scholar 

  • Fester T, Schmidt D, Lohse S, Walter MH, Guiliano G, Bramley PM, Frase PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in Arbuscular mycorrhizal roots. Planta 216:148–154

    Article  CAS  PubMed  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the Arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  PubMed  Google Scholar 

  • Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäum durch unterirdische Pilze. Berichte der Deutchen Botanishen Gesellschaft 3:128–145

    Google Scholar 

  • Freitas MS, Martins MA, Vieira IJC (2004) Produção e qualidade de óleos essenciais de Mentha arvensis em resposta à inoculação de fungos micorrízicos arbusculares. Pesquisa Agropecuária Brasileira, v. 39, p. 887-894.

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Ganesan V, Mahadevan A (1998) The role of mycorrhizae in the improvement of tuber crops in pot and field conditions. In: Prakash A (ed) Fungi in biotechnology. CBS Publishers, New Delhi, pp 51–58

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis (Tansley Review, 76). New Phytol 128:197–210

    Article  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in Arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Garrido E, Bennett AE, Fornoni J, Strauss SY (2010) Variation in Arbuscular mycorrhizal fungi colonization modifies the expression of tolerance to aboveground defoliation. J Ecol 98:43–49

    Article  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC (1992) Protein activities as potential markers of functional endomycorrhizas. In: Read DJ, Lewis DH, Fitter AH, Alexander ID (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 333–339

    Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to Arbuscular mycorrhizal fungi: getting to the roots of symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-pearson V, Gianinazzi S (1995) Proteins and proteins activities in endomycorrhizal symbioses. In: Varna V, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 251–266

    Google Scholar 

  • Goussous SJ, Mohammad MJ (2009) Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. Int J Agric Biol 11:463–467

    CAS  Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas. New Phytol 148:357–359

    Google Scholar 

  • Guissou T (2009) Contribution of Arbuscular mycorrhizal fungi to growth and nutrient uptake by jujube and tamarind seedlings in a phosphate (P)-deficient soil. Afr J Microbiol Res 3(5):297–304

    CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hajra N, Firoza K, Shahina F (2009) Effects of VAM and nematode interaction on some biochemical parameters of sunflower. Pak J Nematol 27(2):193–201

    Google Scholar 

  • Halder S, Ray MB (2006) Effect of VAM soil Containing Glomus fasciculatum on Growth of Withania somnifera Dun. Asian J Exp Sci 2(2):261–268

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London, p 483

    Google Scholar 

  • Harrier L (2001) The Arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    Article  CAS  PubMed  Google Scholar 

  • Harris PM (1978) Mineral nutrition. In: Harris PM (ed) The potato crop. Chapman and Hall, London, pp 195–243

    Google Scholar 

  • Harrison MJ (2005) Signaling in the Arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavanoid accumulation and expression of defense gene transcripts during the establishment of vesicular Arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Hart MM, Forsythe JA (2012) Using Arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 148:206–214

    Article  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of Arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in Arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular–arbuscular mycorrhiza in Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • Hodge A (2000) Microbial ecology of the Arbuscular mycorrhizal. FEMS Microbiol Ecol 32:91–96

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An Arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Jackson ML (1984) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp 205–256

    Google Scholar 

  • Janos DP (1996) Mycorrhizas, succession and rehabilitation of deforested lands in the humid tropics. In: Frankland JC, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Javaid A (2007) Allelopathic interactions in mycorrhizal associations. Allelopathy J 20:29–42

    Google Scholar 

  • Javaid A (2009) Mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Javaid A, Riaz T (2009) Mycorrhizal colonization in different varieties of Gladiolus and its relation with plant vegetative and reproductive growth. Int J Agric Biol 10:278–282

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of Arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal transport of 15N-labelled nitrogen by a vesicular-Arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122:281–288

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms. Can J Bot 82:1089–1109

    Article  Google Scholar 

  • Kamienski F (1881) Die Vegetationsorgane der Monotro pahypopitys L. Bot Zeitschr 39:225–234

    Google Scholar 

  • Kandowangko NY, Suryatmana G, Nurlaeny N, Simanungkalit RDM (2009) Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and Arbuscular mycorrhizae fungi. Hayati J Biosci 16(1):15–20

    Article  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Article  Google Scholar 

  • Karagiannidis N, Thomidis T, Panou-Filotheou E (2012) Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. J Agric Sci 4(3):137–144

    Google Scholar 

  • Kavanova M, Grimoldi AA, Lattanzi FA, Schnyder H (2006) Phosphorus nutrition and mycorrhiza effects on grass leaf growth. P status- and size-mediated effects on growth zone kinematics. Plant Cell Environ 29:511–520

    Article  CAS  PubMed  Google Scholar 

  • Khade SW, Rodrigues BF (2003) Incidence of Arbuscular mycorrhizal colonization in tubers of Gloriosa superba L. Mycorrhiza News 15:14–16

    Google Scholar 

  • Khaliq A, Sanders FE (2000) Effect of vesicular- Arbuscular mycorrhizal in oculation on the yield and phosphorous uptake of field – grown barley. Soil Biol Biochem 32:1691–1696

    Article  CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take all disease is systemically reduced in roots of Mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of Arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51(9):1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kunwar IK, Reddy PJM, Manoharachary C (1999) Occurrence and distribution of AMF associated with garlic rhizosphere soil. Mycorrhiza News 11:4–6

    Google Scholar 

  • Lambert DH, Weidensaul TC (1991) Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci Soc Am J 55:393–398

    Article  CAS  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33(4):1217–1225

    Article  CAS  Google Scholar 

  • Li H, Smith FA, Dickson S, Holloway RO, Smith S (2008) Plant growth depressions in Arbuscular mycorrhizal symbioses: not just caused by carbon drain. New Phytol 178:852–862

    Article  PubMed  Google Scholar 

  • Linderman RG, Davis EA (2004) Varied response of marigold (Tagetes spp.) genotypes to inoculation with different Arbuscular mycorrhizal fungi. Sci Hortic 99:67–78

    Google Scholar 

  • Lone R, Shuab R, Wani KA, Ganaie MA, Tiwari AK, Koul KK (2015a) Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Sci Hortic 193:55–61

    Article  CAS  Google Scholar 

  • Lone R, Shuab R, Sharma V, Kumar V, Mir R, Koul KK (2015b) Effect of Arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J Crop Sci 7:233–243

    Article  Google Scholar 

  • Lone R, Shuab R, Koul KK (2016) AMF association and their effect on metabolite mobilization, mineral nutrition and nitrogen assimilating enzymes in saffron (Crocus sativus L.) plant. J Plant Nutr 39(13):1852:1862

    Article  CAS  Google Scholar 

  • MacKay DC, Carefoot JM, Entz T (1988) Detection and correction of midseason P deficiency in irrigated potatoes. Can J Plant Sci 68:523–534

    Article  CAS  Google Scholar 

  • Maherali H, Klironomos J (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Mahaveer PS, Singh R, Adholeya A (2000) Laboratory manual for basic techniques in arbuscular mycorrhizal research, Center for Mycorrhizal Research, Tata Energy Research Institute New Dehli, India.

    Google Scholar 

  • Mathur N, Vyas A (1995) Changes in enzymes of nitrogen metabolism by VA mycorrhizae in Ziziphusnummularia. J Plant Physiol 147(3–4):331–333

    Article  CAS  Google Scholar 

  • Mathur N, Vyas A (1996) Biochemical changes in Ziziphus xylopyrus by VA mycorrhizae. Bot Bull Acad Sin 37:209–212

    CAS  Google Scholar 

  • Mathur, N., Vyas, A (2000) Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J. Arid Envir., 45:191–195.

    Google Scholar 

  • McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M (2010) Cross ecosystem comparison of in situ plant uptake of amino acid-N and NH4. Ecosystem 13:177–193

    Article  CAS  Google Scholar 

  • Mcumiller I, Hofner W (1991) Influence of the VAM on P-uptake and recovery potential of corn (Zea mays L.) under water stress conditions. Z P flanz Bodenk 154:321–322

    Article  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Miransari M (2010) Contribution of Arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Morandi D, Gianinazzi-Pearson V (1986) Influence of mycorrhiza and phosphate nutrition on secondary metabolite contents of soybean roots. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 787–791

    Google Scholar 

  • Morandi D, Bailey JA, Gianinazzi-Person V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-Arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    Article  CAS  Google Scholar 

  • Morte A, Lovisola C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia clavery. Mycorrhiza 10(3):115–119

    Article  CAS  Google Scholar 

  • Mota-Fernández S, Alvarez-Solis JD, Abud-Archila M, Dendooven L, Gutierrez-Miceli FA (2011) Effect of Arbuscular mycorrhizal fungi and phosphorus concentration on plant growth and phenols in micropropagated Aloe vera L. plantlets. J Med Plant Res 5(27):6260–6266

    Google Scholar 

  • Nair PKR (1998) Directions in tropical agroforestry research: past, present, and future. Agrofor Syst 38:223–245

    Article  Google Scholar 

  • Nasim G (2005) The role of symbiotic soil fungi in controlling roadside erosion and the establishment of plant communities. Caderno de PesquisaserieBiologia 17(1):119–136

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995a) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995b) Multi-functionality and biodiversity in arbuscularmycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Nicolson TH (1967) Vesicular Arbuscular mycorrhiza – a universal plant symbiosis. Sci Prog 55:561–581

    Google Scholar 

  • Nisha MC, Rajeshkumar S (2010) Influence of Arbuscular mycorrhizal fungi on biochemical changes in Wedilla chinensis (Osbeck) merril. Anc Sci Life 29(3):26–29

    PubMed  PubMed Central  Google Scholar 

  • Nzanza B, Marais D, Soundy P (2011) Tomato (Solanum lycopersicum L.) seedling growth and development as influenced by Trichoderma harzianum and Arbuscular mycorrhizal fungi. Afr J Microbiol Res 5(4):425–431

    Google Scholar 

  • Ojha S, Chakraborty MR, Dutta S, Chatterjee NC (2008) Influence of VAM on nutrient uptake and growth of custard-apple. Asian J Exp Sci 22(3):221–224

    Google Scholar 

  • Okon IE, Osonubi O, Sanginga N (1996) Vesicular-arbuscular Mycorrhiza effects on Gliricidia sepium and Senna siamea in a fallowed alley cropping system. Agrofor Syst 33:165–175

    Article  Google Scholar 

  • Osonubi O (1994) Comparative effects of vesicular Arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize and sorghum plant under drought stressed conditions. Biol Fertil Soils 14:159–165

    Article  Google Scholar 

  • Ozgonen H, Akgul DS, Erkilic A (2010) The effects of Arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. In peanut. Afr J Agric Res 5:128–132

    Google Scholar 

  • Pasqualini D, Uhlmann A, Sturmer SL (2007) Arbuscular mycorrhizal fungal communities influence growth and phosphorus concentration of woody plants species from the Atlantic rain forest in South Brazil. For Ecol Manage 245:148–155

    Article  Google Scholar 

  • Pirozynski KA, Mulloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6(3):153–164

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martın M, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Potty VP (1985) Cassava as alternate host for multiplication of VAM fungi. Plant Soil 88:135–137

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pursglove JD, Sanders FE (1981) The growth and phosphorus economy of the early potato (Solanum tuberosum). Commun Soil Sci Plant Anal 12:1105–1121

    Google Scholar 

  • Qui YL, Lee J (2000) Transition to a land flora: a molecular phylogenetic perspective. J Phycol 36:799–802

    Article  Google Scholar 

  • Raja P, Mahadevan A (1991) Axenic cultivation of VAM fungi – a review. J Plant Res 7:1–6

    Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal association in lower land plants. Philos Trans R Soc Lond B 355:815–831

    Article  CAS  Google Scholar 

  • Reddy N, Raghavender CR, Sreevani A (2006) Approach for enhancing Mycorrhiza mediated disease resistance of tomato damping-off. Indian Phytopathol 59(3):299–304

    Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify Arbuscular mycorrhizal fungi (Glomales) with in colonized roots. Mycorrhiza 10:73–80

    Article  CAS  Google Scholar 

  • Regvar M, Vogel-Mikus K, Severkar T (2003) Effect of AMF inoculum from field isolates on the yield of green pepper, parsley, carrot, and tomato. J Folia Geobotanica 38(2):223–234

    Article  Google Scholar 

  • Reidinger S, Eschen R, Gange AC, Finch P, Bezemer TM (2012) Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea. Acta Oecol 38:8–16

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular Arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigamonte TA, Pylro VS, Duarte GF (2010) The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Braz J Microbiol 41:832–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53

    Article  CAS  Google Scholar 

  • Rillig MC, Wendt S, Antonovics J, Hempel S, Kohler J, Wehner J, Caruso T (2014) Interactive effects of root endophytes and Arbuscular mycorrhizal fungi on an experimental plant community. Oecologia 174:263–270

    Article  PubMed  Google Scholar 

  • Robert M, Auge RM, Heather D, Carl F, Sams EA, Ghazala N (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121

    Article  Google Scholar 

  • Rodríguez Y, de la Noval B, Fernández F, Rodríguez P (2004) Estudio comparativo delcomportamiento de seiscepas de hongosmicorrícicosarbusculares en su interacción con el tomate (Lycopersicon esculentumMill. var. “Amalia”). Ecología Aplicada 3:162–171

    Article  Google Scholar 

  • Rovira AD (1996) Plant root exudates. Bot Rev 35:35–58

    Article  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Santi MM, Dipjyoti C, Satyahari D (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  Google Scholar 

  • Santos BA, Maia LC, Cavalcante UM, Correia MTS, Coelho LCBB (2001) Effect of Arbuscular mycorrhizal fungi and soil phosphorus level on expression of protein and activity of peroxidase on passion fruit roots. Bras J Biol 61(4):693–700

    Article  CAS  Google Scholar 

  • Scharrff AM, Jakobsen I, Rosendahl L (1997) The effect of symbiotic microorganisms on phytoalexin contents of soybean roots. J Plant Physiol 151:716–723

    Article  Google Scholar 

  • Schellembaum L, Muller J, Boller T, Wienken A, Schuepp H (1998) Effects of drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in “The activities of invertase and trehalase, and in the pools of amino acids and imino acids”. New Phytol 138:59–66

    Article  Google Scholar 

  • Schubler A (2002) Molecular phyogeny, taxonomy, and evolution of Gossiphora pyriformis and Arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Selvaraj T, Kim H (2004) Ecology of vesicular Arbuscular mycorrhizal (VAM) fungi in coastal areas of India. Agric Chem Biotechnol 47:71–76

    Google Scholar 

  • Selvaraj T, Chellappan P, Jeong YJ, Kim H (2005) Occurrence and quantification of vesicular Arbuscular mycorrhizal (VAM) fungi in industrial polluted soils. J Microbiol Biotechnol 15(1):147–154

    CAS  Google Scholar 

  • Selvaraj T, Nisha MC, Rajeshkumar S (2009) Effect of indigenous arbuscular mycorrhizal fungi on some growth parameters and phytochemical constituents of Pogostemon patchouli Pellet. Maejo Int J Sci Technol 3(1):222–234

    CAS  Google Scholar 

  • Sensoy S, Demir S, Turkmen O, Erdinc C, Savur OB (2007) Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different Arbuscular mycorrhizal fungi. Sci Hortic 113:92–95

    Article  Google Scholar 

  • Sharma MP, Adholeya A (2000) Benefits of inoculation of indigenous AM fungi upon growth and productivity of four onion (Allium cepa L.) varieties in an Alfisol. Biol Agric Hortic 18(1):1–14

    Article  Google Scholar 

  • Sharma AK, Srivastava PC, Johri BN (1991) Zinc transport in VA mycorrhizal plants. Mycorrhiza News 3:1–4

    Google Scholar 

  • Shreenivasa KR, Krishnappa K, Rekha D (2011) Interaction effect of arbuscular mycorrhizal fungus, glomus fasciculatum and root knot nematode meloidogyne incognita on biochemical parameters in tomato. IJSN 2(3):534–537

    CAS  Google Scholar 

  • Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul KK (2014) Benefits of inoculation of Arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am-Eurasian J Agric Environ Sci 14(6):527–535

    Google Scholar 

  • Shuab R, Malla NA, Ahmad J, Lone R, Koul KK (2016) Arbuscular mycorrhizal fungal symbiosis with saffron (Crocus sativus L.) plant. J New Biol Rep 5(1):59–67

    Google Scholar 

  • Sieverding E (1991) Vesicular-Arbuscular mycorrhiza management in tropical agrosystems. DeutcheGesellschaftfurrTechnischeZusammenarbeit, GTZ No. 224. Eschborn. 371

    Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Silva MF, Pescador R, Rebelo RA, Sturmer SL (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Braz J Plant Physiol 20(2):119–130

    Article  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Skimmer FA (1985) Agriculture and biotechnology. In: Higgins IJ, Best DJ, Jones J (eds) Biotechnology: principles and applications. Blackwell Scientific Publication

    Google Scholar 

  • Smith SE (1995) Discoveries, discussions and directions in mycorrhizal research. In: Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 3–24

    Google Scholar 

  • Smith SE, Read DJ (1997a) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith S, Read DJ (1997b) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Academic Publishers, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of Arbuscular mycorrhizas in plant nutrition and growth. New paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of Arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13

    Article  PubMed  Google Scholar 

  • Smith SE, St John J, Smith FA, Nicholas DJD (1985) Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L.: effects of mycorrhizal infection and phosphate nutrition. New Phytol 99:211–227

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1993) Nutrient transport in mycorrhizae; structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113

    Article  Google Scholar 

  • Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, Rim YS, Cho JS, Kim TH, Lee JH (2003) Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hortic, v. 98, p. 173-183.

    Google Scholar 

  • Solanki AS, Kumar V, Sharma S (2011) AM fungi and Azotobacter chroococcum affecting yield, nutrient uptake and cost efficacy of Chlorophytum borivilianum in Indian Arid Region. J Agric Technol 7(4):983–991

    Google Scholar 

  • Sorial ME (2001) Growth, phosphorus uptake and water relations of wheat infected with an arbuscular mycorrhizal fungus under water stress. Ann Agric Sci Moshtohor 39(2):909–931

    Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P (1989) Chitinase in roots of mycorrhizal Alfium porrum: regulation and localization. Planta 177:447–455

    Article  CAS  PubMed  Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of Arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278

    Article  Google Scholar 

  • Subramanian KS, Charest C (1997) Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25–32

    Article  Google Scholar 

  • Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Plant Physiol 102 285–296

    Google Scholar 

  • Subramanian KS, Jegan RA, Gomathy M, Vijayakumar S (2011) Biochemical and nutritional responses of tripartite soybean Rhizobium-Glomus association under low and high P fertilization. Madras Agric J 98(7–9):224–228

    Google Scholar 

  • Taber RA, Trappe JM (1982) Vesicular Arbuscular mycorrhiza in rhizomes scale-like leaves, roots and xylem of ginger. Mycologia 74:156–161

    Article  Google Scholar 

  • Tarafdar JC, Rao AV (2001) Response of cluster bean to Glomus mosseae and Rhizobium in an arid soil fertilized with nitrogen, phosphorus and farm yard manure. J Indian Soc Soil Sci 49:751–755

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1993) Fossil Arbuscular mycorrhizae from the early devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Tesdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root system of rye grass. Aust J Soil Sci 17:429–441

    Article  Google Scholar 

  • Timonen S, Peterson RL (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244:199–210

    Article  CAS  Google Scholar 

  • Tobar R, Azcon R, Barea JM (1994a) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Tobar R, Azcon R, Barea JM (1994b) The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhiza. Mycorrhiza 4:105–108

    Article  Google Scholar 

  • Tong-jian X, Qing-song Y, Wei R, Guo-hua X, Qi-rong S (2010) Effect of inoculation with Arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agric Sci China 9(4):528–535

    Article  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Bhatacharjee MK, Dutta S (2010) Role of Arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytotolerance in plants: prospects for phytoremediation. J Phytology 2(7):16–27

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer JA (1994) Two classes of plant antibiotics: phytoalexins versus “Phytoanticipins”. Plant Cell 6:1191–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Prieto MA, Miatello RM (2010) Organosulfur compounds and cardiovascular disease. Mol Aspects Med 31(6):540–545

    Article  CAS  PubMed  Google Scholar 

  • Verma NK (1998) Effect of VA mycorrhiza on the growth and P uptake in Eupatorium adenophorum Spring. (Asteraceae) grown in soil amended with soluble phosphate. J Natl Bot Soc 52:41–45

    Google Scholar 

  • Vierheiling H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinases and β-1, 3 – glucanase in the roots of host and non host plants of vesicular- Arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337–343

    Article  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular –arbuscular mycorrhizal fungus (Glomusintraradix) induces a defense response in mycorrhizal alfalfa roots. Plant Physiol 108:1449–1454

    Article  Google Scholar 

  • Ward NI, Stead K, Reeves J (2001) Impact of endomycorrhizal fungi on plant trace element uptake and nutrition. Nutr Pract 32:30–31

    Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2009) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia. doi:10.1016/j. pedobi. 2009.10.002

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wood T (1992) VA mycorrhizal fungi: challenges for commercialization. In: Arora DK, Elander P, Mukerji KG (eds) Handbook of applied mycology, fungal biotechnology IV. Marcel Dekker Inc., New York, pp 823–848

    Google Scholar 

  • Wu Q, Xia R (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhub H, Zhao H, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79

    Google Scholar 

  • Zhongqun H, Chaoxing H, Zhibin Z, Zhirong Z, Huaisong W (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular

    Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systematic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq Lone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lone, R., Shuab, R., Khan, S., Ahmad, J., Koul, K.K. (2017). Arbuscular Mycorrhizal Fungi for Sustainable Agriculture. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_25

Download citation

Publish with us

Policies and ethics