Skip to main content

Microbes as Biocontrol Agents

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstract

Phytopathogens pose a major threat to ecosystem stability and food production, indicating the need for developing methods to control the severe losses caused by these pathogens. To control these pathogens, the use of various chemical pesticides is majorly practiced. These pesticides are associated with environmental and health hazards and also pose a risk of resistance development in phytopathogens against them forcing the researcher towards the development of alternative and innovative methods by which sustainable management of plant diseases can be achieved. To control plant diseases and have pesticide-free food worldwide, the use of natural antagonistic microorganisms known as biocontrol agents or biological control agents (BCA) is employed. BCA can act on these pathogens through a number of mechanisms such as antibiosis, hyperparasitism, enzyme production, induction of plant resistance mechanisms and competition for essential nutrients and space and through plant growth promotion. Apart from controlling phytopathogens, these microbial agents also promote plant growth and stress tolerance. BCA can be used as bioinsecticides, bionematicides and biopesticides. They are also used for the management of post-harvest diseases. Recently, recombinant microbes have been developed with enhanced biocontrol capabilities. Several commercially available BCA are currently being used for the efficient control of plant disease with improved productivity of many crops. These majorly include GB34, Kodiak, Serenade and Companion containing Bacillus as the active ingredient, Biosave 10LP and Bio-jet containing Pseudomonas as the active ingredient and Soilguard, Trichodex and Trichojet containing Trichoderma as the active ingredient. Thus, use of microbes such as fungi, bacteria, yeast and viruses holds an enormous potential as biocontrol agents to replace conventional chemical-based pesticides and provide food security in a safe and eco-friendly manner.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-981-10-3473-2_28.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-981-10-3473-2_28

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Zablotowicz RM, Horn BW, Phillips NA, Johnson BJ, Jin X, Abel CA (2011) Comparison of major biocontrol strains of nonaflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:198–208

    Article  CAS  PubMed  Google Scholar 

  • Abd-Alla MA, El-Mohamedy RSR, El-Mougy NS (2007) Control of sour rot disease of lime fruits using saprophytic isolates of yeast. Egypt J Phytopathol 35:39–51

    Google Scholar 

  • Ajouz S, Walker AS, Fabre F, Leroux P, Nicot PC, Bardin M (2011) Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl 56:353–363

    Article  CAS  Google Scholar 

  • Alaniz Zanon MS, Chiotta ML, Giaj-Merlera G, Barros G, Chulze S (2013) Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Int J Food Microbiol 162:220–225

    Article  CAS  PubMed  Google Scholar 

  • Alfano G, Ivey ML, Cakir C, Bos JI, Miller SA, Madden LV, Kamoun S, Hoitink HA (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Biol Control 97:429–437

    CAS  Google Scholar 

  • Amer GA, Utkhede RS (2000) Development of formulation of biological agents for the management of root rot lettuce and cucumber. Can J Microbiol 46:809–816

    Article  CAS  PubMed  Google Scholar 

  • Artanti N, Tachibana S, Kardono LBS, Sukiman H (2012) Isolation of [alpha]-glucosidase inhibitors produced by an endophytic fungus, Colletotrichum sp. TSC13 from Taxus sumatrana. Pak J Biol Sci 15(14):673

    Article  PubMed  Google Scholar 

  • Atehnkeng J, Ojiambo PS, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R (2008) Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Atehnkeng J, Ojiambo PS, Cotty PJ, Bandyopadhyay R (2014) Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.) Biol Control 72:62–70

    Article  Google Scholar 

  • Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Eco-friendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company

    Google Scholar 

  • Banerjee M, Yesmin L (2002) Sulfur-oxidizing plant growth promoting Rhizobacteria for enhanced canola performance. US Patent

    Google Scholar 

  • Bardin M, Comby M, Troulet C, Nicot PC (2013) Relationship between the aggressiveness of Botrytis cinerea on tomato and the efficacy of biocontrol. IOBCWPRS Bull 86:163–168

    Google Scholar 

  • Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera cocultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Barros G, Chiotta M, Reynoso M, Torres A, Chulze S (2007) Molecular characterization of Aspergillus section flavi isolates collected from peanut fields in Argentina using AFLPs. J Appl Microbiol 103:900–909

    Article  CAS  PubMed  Google Scholar 

  • Bell JA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    Article  CAS  Google Scholar 

  • Ben Abdallah D, Frikha-Gargouri O, Tounsi S (2015) Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 119:196–207

    Article  CAS  PubMed  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanism of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2015) Beyond borders: investigating microbiome interactivity and diversity for advanced biocontrol technologies. Microb Biotechnol 8:5–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolek Y, Bell AA, El-Zik KM, Thaxton PM, Magill CW (2005) Reaction of cotton cultivars and F2 population to stem inoculation with isolates Verticillium dahliae. J Phytopathol 153:269–273

    Article  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce A, Douglas S, Susan V, Ron EW (2003) Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int Biodeterior Biodegradation 51:101–108

    Article  CAS  Google Scholar 

  • Buck JW, Jeffers SN (2004) Effect of pathogen aggressiveness and vinclozolin on efficacy of Rhodotorula glutinis PM4 against Botrytis cinerea on geranium leaf disks and seedlings. Plant Dis 88:1262–1268

    Article  Google Scholar 

  • Burges HD (1998) Formulation of microbial pesticides. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Burse A, Weingart H, Ullrich MS (2004) NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 70:693–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt TM, Goettel MS, Papierok B (1999) Directory of specialists involved in the development of fungi as biocontrol agents. Colin Butt Design & Print, Warley

    Google Scholar 

  • Butt TM, Jackson CW, Magan N (2001) Fungal biological control agents: progress, problems and potential. CABI International, Wallingford

    Google Scholar 

  • Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17:239–252

    Article  CAS  PubMed  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  CAS  PubMed  Google Scholar 

  • Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42:326–335

    Article  Google Scholar 

  • Chet I, Benhamou N, Harman S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis Ltd., London, pp 153–172

    Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao XW, Borriss R (2015) Biocontrol mechanisms by root-associated Bacillus amyloliquefaciens FZB42 a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins DP, Jacobsen B (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol Control J 26:153–161

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn KL, Nowak J, Lazarovits G (1997) A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808

    Article  CAS  Google Scholar 

  • Connick W, Daigle D, Quimby P (1991) An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol 5:442–444

    CAS  Google Scholar 

  • Contreras-Cornejo HA, MacíasRodríguez L, CortésPenagos C, LópezBucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cotty PJ (1994) Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infection cotton bolls and on aflatoxin content of cottonseed. Phytopathology 84:1270–1277

    Article  Google Scholar 

  • Crowe JD, Olsson S (2001) Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl Environ Microbiol 67:2088–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler HG, Cox RH, Crumley FG, Cole PD (1986) 6-Pentyl-alpha pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties. Agric Biol Chem 50:2943–2945

    CAS  Google Scholar 

  • Cutler HG, Himmetsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611

    CAS  Google Scholar 

  • de Oliveira RR, Nicholson WL (2016) Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. Appl Microbiol Biotechnol 100:719–728

    Google Scholar 

  • De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • De Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, Zwiers LH (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62:195–207

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998a) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  CAS  PubMed  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJJ (1998b) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewi RT, Iskandar YM, Hanafi M, Karnado LBS, Angelina M, Dewijanti ID, Banjajarnmohar SDS (2007) Pakistan. J Biochem 6:465–471

    Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  PubMed  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbelare S, Vanderleydern J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  Google Scholar 

  • Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240

    Article  Google Scholar 

  • Dorner JW (2004) Biological control of aflatoxin contamination of crops. J Toxicol Toxin Rev 23:425–450

    Article  CAS  Google Scholar 

  • Dorner JW (2008) Management and prevention of mycotoxins in peanuts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:203–208

    Article  CAS  PubMed  Google Scholar 

  • Dorner JW, Cole RJ (2002) Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J Stored Prod Res 38:329–339

    Article  CAS  Google Scholar 

  • Dorner JW, Lamb MC (2006) Development and commercial use of afla-guard, an aflatoxin biocontrol agent. Mycot Res 22:33–38

    Article  CAS  Google Scholar 

  • Dorner JW, Cole RJ, Connick WJ, Daigle DJ, McGuire MR, Shasha BS (2003) Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol Control 26:318–324

    Article  Google Scholar 

  • Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt EE, Porat R (2002) Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92:393–399

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma-the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337:1–9

    Google Scholar 

  • Dubey SC, Bhavani R, Singh B (2009) Development of Pusa 5SD for seed dressing and Pusa Biopellet 10G for soil application formulations of Trichoderma harzianum and their evaluation for integrated management of dry root rot of mungbean (Vigna radiata). Biol Control 50:231–242

    Article  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich KC (2014) Nonaflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol 5:50

    Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87

    Article  CAS  Google Scholar 

  • Erdogan O, Benlioglu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control 53:39–45

    Article  Google Scholar 

  • Fedi S, Tola E, Moenne-Loccoz Y, Dowling DN, Smith LM, O’Gara F (1997) Evidence for signalling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Appl Environ Microbiol 63:4261–4266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraz LP, da Cunha T, da Silva AC, Kupper KC (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res 188:72–79

    Article  PubMed  Google Scholar 

  • Fialho MB, Toffano L, Pedroso MP, Augusto F, Pascholati SF (2010) Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 26:925–932

    Article  CAS  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil microorganisms. Plant Soil 159:123132

    Article  Google Scholar 

  • Franco OL, Rigden DJ, R Melo F, Bloch C, Silva CP, Grossi de Sá MF (2000) Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. Eur J Biochem 267:2166–2173

    Article  CAS  PubMed  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Frikha-Gargouri O, Ben Abdallah D, Ghorbel I, Charfeddine I, Jlaiel L, Triki MA, Tounsi S (2017) Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress Agrobacterium crown gall tumours on tomato plants. Pest Manag Sci 73:568–574

    Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:65–167

    Google Scholar 

  • Gaur RB, Sharma RN, Gautam VS, Dangi RP (2010) Management of Sclerotinia rot of mustard through bioagents. Indian Phytopathol 63:392–397

    Google Scholar 

  • Geng P, Chen S, Hu M, Rizwan-ul-Haq M, Lai K, Qu F, Zhang Y (2011) Combination of Kluyveromyces marxianus and sodium bicarbonate for controlling green mold of citrus fruit. Int J Food Microbiol 151:190–194

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leefang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of fieldgrown wheat. Appl Environ Microbiol 67:33713378

    Article  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. 8. Antimicrob Agents Chemother 29:488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haissam JM (2011) Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. Antonie Van Leeuwenhoek 99:93–105

    Article  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Harman GE, Hayes CK (1994) Biologically based technologies for pest control: pathogens that are pests of agriculture. A Report to the Office of Technology Assessment US Congress 75 pp

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol 56:181–187

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–118

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Trichoderma and Gliocladium, vol 2: Enzymes, biological control and commercial applications. Taylor & Francis, London, pp 173–184

    Google Scholar 

  • Howell CR, Beier RC, Stipanovi RD (1980) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of pythium pre-emergence damping off by the bacterium. Phytopathology 78:105–1078

    Google Scholar 

  • Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control 54:359–365

    Article  Google Scholar 

  • Inaoka T, Ochi K (2011) Scandium stimulates the production of amylase and bacilysin in Bacillus subtilis. Appl Environ Microbiol 77:8181–8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingavat N, Dobereiner J, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2009) Aspergillusol A, an α-glucosidase inhibitor from the marine-derived fungus Aspergillus aculeatus. J Nat Prod 72:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is-linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jataraf J, Radhakrim NV, Hannk P, Sakoof R (2005) Biocontrol of tomato damping-off caused by Pythium aphanidermatum. BioControl 15:55–65

    Article  Google Scholar 

  • Jeyarajan R (2006) Prospects of indigenous mass production and formulation of Trichoderma. In: Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control Bangalore, pp 74–80

    Google Scholar 

  • Jorjani M, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2011) Controlling sugarbeet mortality disease by application of new bioformulations. J Plant Prot Res 52:303–307

    Google Scholar 

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1:39–57

    Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Katska V (1994) Inter-relationship between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biol Plant 36:99–104

    Article  Google Scholar 

  • Kim YS, Jeon Y (2016) Biological control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium. Plant Pathol J 32:251–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppression in soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen XH, Vater J, Borriss R (2007) DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 73:6953–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Scher K, Mukherjee M, PardovitzKedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398:765–770

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9:3838–3852

    Google Scholar 

  • Kunoh H (2002) Endophytic actinomycetes: attractive biocontrol agents. J Gen Plant Pathol 68:249–252

    Article  CAS  Google Scholar 

  • Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lahlali R, Peng G, Gossen BD, McGregor L, FQ Y, Hynes RK et al (2013) Evidence that the bio-fungicide Serenade (Bacillus subtilis) suppresses club-root on canola via antibiosis and induced host resistance. Phytopathology 103:245–254

    Article  CAS  PubMed  Google Scholar 

  • Lewis JA (1991) Formulation and delivery system of bio-control agents with emphasis on fungi. In The rhizosphere and plant growth Springer, Dordrecht, pp 279–287

    Google Scholar 

  • Lo CT, Nelson EB, Harman GE (1997) Biological control of Pythium, Rhizoctonia and Sclerotinia infected diseases of turfgrass with Trichoderma harzianum. Phytopathology 84:1372–1379

    Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz MP, Feichtinger G, Defago G, Duffy B (2003) Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl Environ Microbiol 69:3077–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado MC, Orosco CE, Gordillo MA, Navarro AR (2010) In vivo and in vitro antagonism of Streptomyces sp RO3 against Penicillium digitatum and Geotrichum candidum. Afr J Microbiol Res 4:2451–2456

    Google Scholar 

  • Mansoori M, Heydari A, Hassanzadeh N, Rezaee S, Naraghi L (2013) Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium Wilt disease. J Plant Prot Res 53:11–14

    Article  Google Scholar 

  • Mariappan A, Makarewicz O, Chen XH, Borriss R (2012) Two-component response regulator DegU controls the expression of bacilysin in plant growth promoting bacterium Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 22:114–125

    Article  CAS  PubMed  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  CAS  PubMed  Google Scholar 

  • Matsukuma S, Okuda T, Watanabe J (1994) Isolation of actinomycetes from pine litter layers. Actinomycetology 8:57–65

    Article  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance to tobacco necrosis virus. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take all of wheat. Appl Environ Microbiol 61:2554–2559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M, Zhao X, Cohen MF, Raaijmakers JM (2007) Wheat cultivar specific selection of 2,4-diacetylphloroglucinol producing fluorescent Pseudomonas species from resident soil populations. Phytopathology 97:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • McMullen M, Bergstrom G, De Wolf E, DillMacky R, Hershman D, Shaner G, Van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100:15965–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J, Rodríguez-Jurado D, Hervás A, Jiménez-Diaz RM (2004) Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control 30:474–486

    Article  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypo-virulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Milner JL, Silosuh L, Lee JC, He HY, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra DS, Singh US, Dwivedi TS (2001) Comparative efficacy of normal seed treatment and seed biopriming with commercial formulations of Trichoderma spp. In: 53rd Annual meeting of Indian Phytopathological Society and national symposium on ecofriendly approaches for Trichoderma, Chennai, pp 21–23

    Google Scholar 

  • Moore LW, Warren G (1979) Agrobacterium radiobacter strain 84 and biological control of crown gall. Annu Rev Phytopathol 17:163–179

    Article  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Mukhopadhyay AN (1995) In situ, mycoparasitism of Gliocladium virens on Rhizoctonia solani. Indian Phytopathol 48:101–102

    Google Scholar 

  • Mukherjee PK, Buensanteai N, MoranDiez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of nonribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  PubMed  Google Scholar 

  • Mustafa A, Khan MA, Inam-ul-Haq M, Khan SH, Pervez MA (2009) Mass multiplication of Trichoderma spp on organic substrate and their effect in management of seed borne fungi. Pak. J Phytopathol 21:108–114

    Google Scholar 

  • Nair SS, Kavrekar V, Mishra A (2013) In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur J Exp Biol 3:128–132

    Google Scholar 

  • Notz R, Maurhofer M, Dubach H, Haas D, Defago G (2002) Fusaric acid producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106

    Google Scholar 

  • Omann MR, Lehner S, Escobar Rodriguez C, Brunner K, Zeilinger S (2012) The seven transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host.

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Otto-Hanson LK, Grabau Z, Rosen C, Salomon CE, Kinkel LL (2013) Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control. Phytopathology 103:34–42

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Weller DM, Thomashow LS (1992) Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var tritici by Pseudomonas fluorescens 279. Phytopathology 82:178–184

    Article  CAS  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162:233–243

    Article  CAS  PubMed  Google Scholar 

  • Poromarto SH, Nelson BD, Freeman TP (1988) Association of binucleate Rhizoctonia with soybean and mechanism of biocontrol of Rhizoctonia solani. Phytopathology 88:1056–1067

    Article  Google Scholar 

  • Prasad RD, Rangeshwaran R (1998) A modified liquid medium for mass production of Trichoderma by fermentation process. In: Abstracts of national symposium on eco friendly approaches in the management of plant diseases, Shimoga

    Google Scholar 

  • Prasad RD, Rangeshwaran R (2000) Shelf life and bioefficacy of Trichoderma harzianum formulated in various carrier materials. Plant Dis Res 15:38–42

    Google Scholar 

  • Prasad RD, Rangeshwaran R, Anuroop CP, Phanikumar PR (2002) Bioefficacy and shelf life of conidial and chlamydospore formulation of Trichoderma harzianum. J Biol Control 16:145–148

    Google Scholar 

  • Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q (2016) Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit Rev Biotechnol:1–11

    Google Scholar 

  • Ren X, Kong Q, Wang H, Yu T, Zhou W, Zheng X (2012) Biocontrol of fungal decay of citrus fruit by Pichia pastoris recombinant strains expressing cecropin A. Food Chem 131:796–801

    Article  CAS  Google Scholar 

  • RiveraVaras VV, Freeman TA, Gudmestad NC, Secor GA (2007) Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology 97:1331–1337

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito N (1982) alpha-Amylase inhibitor from fungus Cladosporium herbarum. J Biol Chem 257:3120–3125

    CAS  PubMed  Google Scholar 

  • Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  PubMed  Google Scholar 

  • Sansone G, Rezza I, Calvente V, Benuzzi D, Sanz De Tosetti MI (2005) Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol Technol 35:245–251

    Article  CAS  Google Scholar 

  • Santos A, Sanchez A, Marquina D (2004) Yeasts as biological agents to control Botrytis cinerea. Microbiol Res 159:331–338

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Spadaro D, Garibaldi A, Gullino ML (2009) Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. Eur J Plant Pathol 123:183–193

    Article  CAS  Google Scholar 

  • Sawant IS, Sawant SD (1996) A simple method for achieving high cfu of Trichoderma harzianum on organic wastes for field applications. Indian Phytopathol 9:185–187

    Google Scholar 

  • Schippers B, Geels EP, Bakker PAHM, Bakker AW, Weisbeek PJ, Lugtenberg B (1986) Methods of studying growth stimulating Pseudomonads: problems and progress. In: Swinburne TR (ed) Iron siderophores and plant disease

    Google Scholar 

  • Schnabel EL, Jones AL (2001) Isolation and characterization of Five bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Appl Environ Microbiol 67:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact 14:562–571

    Article  CAS  PubMed  Google Scholar 

  • Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant Microbe Interact 15:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Schouten A, Van Den Berg G, EdelHermann V, Steinberg C, Gautheron N, Alabouvette C et al (2004) Defence responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) EPL1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar R, Srivastava KD (2000) Management of spot blotch of wheat using bio control agent. Im: National conference on Swadeshi Vighan, New Delhi, 26–28 December

    Google Scholar 

  • Sharma VK, Nowak J (1998) Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth-promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536

    Article  CAS  Google Scholar 

  • Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Silva HSA, Romeiro RDS, Macagnan D, Halfeld-Vieira BDA, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    Article  CAS  Google Scholar 

  • Simons M, vander Bij AJ, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh US, Zaidi NW (2002) Current status of formulation and delivery of fungal and bacterial antagonists for disease management in India. In: Rabindra RJ, Hussaini SS, Ramanujam B (eds) Microbial biopesticide formulations and application. Project Directorate of Biological Control, Bangalore, p 269

    Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Thakur A, Kaur S, Chadha BS, Kaur A (2012) Acetyl-cholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis. Appl Biochem Biotechnol 168:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2015) An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. Appl Biochem Biotechnol 175:2020–2034

    Article  CAS  PubMed  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. Trichoderma and Gliocladium basic biology taxonomy and. Genetics 1:139–191

    CAS  Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Srivastava RK, Singh RK, Kumar N, Singh S (2010) Management of Macrophomina disease complex in jute (Corchorus olitorius) by Trichoderma viride. J Biol Control 24:77–79

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stockwell VO, Kawalek MD, Moore LW, Loper JE (1996) Transfer of pAgK84 from the biocontrol agent Agrobacterium radiobacter K84 to under field conditions. Phytopathology 86:31–37

    Article  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Sun HBX, Lu F, Lu Y, Wu Y, Lu Z (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol 55:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Sundheim L, Tronsmo A (1988) Hyperparasites in biological control. In: Biocontrol of plant diseases, pp 53–69

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Kaur S, Kaur A, Singh V (2012) Detrimental effects of endophytic fungus Nigrospora sp. on survival and development of Spodoptera litura. Biocontrol Sci Technol 22:151–161

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    Article  CAS  Google Scholar 

  • Torres AM, Barros GG, Palacios SA, Chulze SN, Battilani P (2014) Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int 62:11–19

    Article  CAS  Google Scholar 

  • Toyoda H, R Utsumi (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. US Patent 4,988,586

    Google Scholar 

  • van Peer RG, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • van Zyl FGH, Strijdom BW, Staphorst JL (1986) Susceptibility of Agrobacterium tumefaciens strains to two agrocin-producing Agrobacterium strains. Appl Environ Microbiol 52:234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti LE, Marra R, Woo LS, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711

    CAS  PubMed  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane. In: Proceedings of the Sugar Technology Association of India Sugar Technology Association, New Delhi, 61, pp 24–39

    Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li G, Jiang D, Huang HC (2009) Screening of plant epiphytic yeasts for biocontrol of bacterial fruit blotch (Acidovorax avenae subsp citrulli) of hami melon. Biol Control 50:164–171

    Article  Google Scholar 

  • Wang HK, Shi YC, Zhang HP, Qi W (2010) Study on the inhibition of Phytophthora drechsleri Tucker by Lactobacillus plantarum Bx62 isolated from koumiss. J Tianjin Univ Sci Technol:1

    Google Scholar 

  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7(1):e29452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Weindling R (1934) Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Weyens N, Van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interaction between Trichoderma spp phytopathogenic fungi and plants. Phytopathology 6:181–185

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wu L, Wu H, Chen L, Xie S, Zang H, Borriss R et al (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microbiol 80:7512–7520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Wu HJ, Qiao J, Gao X, Borriss R (2015) Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front Microbiol 6

    Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sharma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgari. Int J Agric Biol 6:255–259

    Google Scholar 

  • Yadeta KA, Thomma J (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:1–12

    Google Scholar 

  • Yedidia I, Shoresh M, Kerem K, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and the accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamani Z, Aminaee MM, Khaniki GB (2013) Introduction of Beauveria bassiana as a biological control agent for Tribolium castaneum in Kerman province. Arch Phytopathol Plant Prot 46:2235–2243

    Article  Google Scholar 

  • Zeilinger S, Reithner B, Scala V, Peiss I, Lorito M, Mach RL (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci U S A 94:9984–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Wang L, Ma LC, Dong Y, Jiang S, Xu B, Zheng XD (2009) Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biol Control 48:79–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogender Pal Khasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Babbal, Adivitiya, Khasa, Y.P. (2017). Microbes as Biocontrol Agents. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_24

Download citation

Publish with us

Policies and ethics