Skip to main content

PGPR: Current Vogue in Sustainable Crop Production

  • Chapter
  • First Online:

Abstract

Nowadays a large scale of crop produce are pesticide ridden. Heavy application of these hazardous pesticides is not only very costly which leaves financial burden to the farmers but is also harmful to our biodiversity leading to loss of various endangered living species. However, growers are being trained worldwide, and they are progressively switching over their agriculture from chemical or conventional agriculture to organic or sustainable agriculture. Sustainable agriculture reveals crop cultivation with “no chemicals.” But organically cultivated produce are mirage due to their exorbitant prices, at least for the urban dwellers. To resolve this conundrum, the role of plant growth-promoting rhizobacteria (PGPR) has been discussed in the process of plant growth promotion, with their mechanisms and their importance in crop production on sustainable basis. The application of PGPR strain is conducive and creates thrust toward organic farming at every level of farmers, whether it be large landowner or small-scale farmers. However, PGPR strain performance varies from lab to field and even from field to field due to host specificity. Besides, some strains of PGPR have the potential to promote growth of a particular plant, while in another plant they do not respond. There are various ways that promote plant growth such as N2 fixation, P solubilization, siderophore production, phytohormone production, and also the control of phytoparasitic pathogens. In addition to the beneficial role, some important aspects of negativity inducted by the PGPR have also been discussed. Sustainable agriculture, if done in the light of PGPR module, will not only remove the financial burden of the farmers but also prove to be conducive, congenial, and putative. Further studies to commercialize the potent strain of PGPR are stridently needed which will unravel certain yet to be explored mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Monaim MF, EL-Morsi MEA, Hassan MAE (2014) Control of root rot and wilt disease complex of some evergreen fruit transplants by using plant growth promoting rhizobacteria in the New Valley Governorate. Egypt J Phytopathol Pest Manag 1(3):23–33

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Bacteria in agrobiology: crop ecosystems. Springer, Heidelberg, pp 1–36

    Google Scholar 

  • Ahemad M, Khan MS (2010) Phosphate-solubilizing and plantgrowth- promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Amara U, Khalid R, Hayat R (2015) Soil bacteria and phytohormones for sustainable crop production. In: Bacterial metabolites in sustainable agroecosystem. Springer, pp 87–103

    Google Scholar 

  • Anonymous (2015) India tops world hunger list with 194 million people. The Hindu. http://www.thehindu.com/todays-paper/tp-national/india-tops-world-hunger-list-with-194-million-people/article7257822.ece. Accessed 22 Oct 2016

  • Ansari RA, Rizvi R, Mahmood I, Safiuddin, Sumbul A (2016) Siderophore: augmentation in plant and soil health. In: Kumar V et al (eds) Probiotics and agroecosystem. Springer, Singapore. ISBN 978-981-10-4058-0 (in press)

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Bal H, Nayak B, Das L, Subhasis A, Tapan K (2013) Isolation of ACCdeaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotehnol 87:427–444

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bishop PE, Jorerger RD (1990) Genetics and molecular biology of an alternative nitrogen fixation system. Plant Mol Biol 41:109–125

    CAS  Google Scholar 

  • Brink SC (2016) Unlocking the secrets of the rhizosphere. Trends Plant Sci 21(3):169–170

    Article  CAS  PubMed  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  PubMed  Google Scholar 

  • Cassells AC, Rafferty-McArdle SM (2012) Priming of plant defenses by PGPR against fungal and bacterial plant foliar pathogens. In: Maheshwari DK (ed) Bacterai in agrobiology: stress management. Springer, Berlin, pp 1–26

    Google Scholar 

  • Castillo P, Molina R, Andrade A, Vigliocco A, Alemano S, Cassán FD (2015) Phytohormones and other plant growth regulators produced by PGPR: the genus Azospirillum. In: Handbook for Azospirillum. Springer, pp 115–138

    Google Scholar 

  • Compant SB, Reiter A, Sessitsch J, Nowak C, Clement E, Barka A (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. App Environ Microbiol 71:1685–1693

    Article  CAS  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, pp 73–109

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1997) Application of plant growth-promoting rhizobacteria to soybean [ Glycine max (L.) Merrill] increases protein and dry matter yield under short-season conditions. Plant Soil 188:33–41

    Article  CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Nat Biotechnol 6:282–286

    Article  CAS  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Fabbri P, Del Gallo M (1995) Specific interaction between chickpea (Cicer arietinum) and three chickpea-Rhizobium strains inoculated singularly and in combination with Azospirillumbrasilense Cd. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics – physiology -ecology, vol G37, NATO ASI Series, Series G: Ecological sciences. Springer, Berlin, pp 207–212

    Google Scholar 

  • Frankenberger Jr WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker Inc

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gabriela F, Casanovas EM, Quillehauquy V, Yommi AK, Goni MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin

    Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  PubMed  Google Scholar 

  • Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74:467–472

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiobosis

    Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Google Scholar 

  • Gula A, Ozaktanb H, Kıdogluc F, Tuzela Y (2013) Rhizobacteria promoted yield of cucumber plants grown in perlite under Fusarium wilt stress. Sci Hortic 153:22–25

    Article  Google Scholar 

  • Gupta A, Gupta R, Singh RL (2017) Microbes and environment. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 43–84

    Google Scholar 

  • Haghighi BJ, Alizadeh O, Firoozabadi AH (2011) The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture. Adv Environ Biol 5:3079–3083

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant-microbe symbioses. Plant Soil 194:171–184

    Article  CAS  Google Scholar 

  • Idris EES, Bochow H, Ross H, Boriss F (2004) Use of Bacillus subtilis as biocontrol agent. 6. Phytohormone action of culture filtrate prepared from plant growth promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111:583–597

    CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Karličić V, Ćurguz VG, Raičević V (2016) The alleviation of reforestation challenges by beneficial soil microorganisms. Reforesta 1(1):238–260

    Google Scholar 

  • Khalid A, Akhtar MJ, Mahmoo MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin, p 133

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphatesolubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070

    Google Scholar 

  • Khokhar MK, Gupta R, Sharma R (2012) Biological control of plant pathogens using biotechnological aspects: a review, 1: 277. http://dx.doi.org/10.4172/scientificreports.277

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference plant pathogenic bacteria. Angers, France

    Google Scholar 

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34(6):2082–2085

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Leij F (1990) Rhizosphere. Wiley

    Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud A, El-Sheikh AM, Baset AS (1984) Germination ecology of Rhazya stricta Decne, vol 15. J Coll Sci, KSU, UK, pp 5–25

    Google Scholar 

  • Manivannan M (2011) Effect of PGPR as biofertilizer on growth and yield of paddy. Int J Pharm Biol Arch 2:6–10

    Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil and fertilizers phosphorus update. In: Proceedings of Alberta Soil Science Workshop proceedings, 20–22 February, Edmonton, pp 84–104

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50(1):101–136

    Article  CAS  PubMed  Google Scholar 

  • Minamisawa K, Imaizumi-Anraku H, Bao Z, Shinoda R, Okubo T, Ikeda S (2016) Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes Environm 31(1):4

    Article  Google Scholar 

  • Mirzai A, Vazan S, Naseri R (2010) Response of yield and yield components of safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirillum and different nitrogen levels under dry land condition. World Appl Sci J 11(10):1287–1291

    Google Scholar 

  • Munshid H, Simon S, Lal AA (2013) Antagonistic potential of bacillus subtilis and Pseudomonas fluorescens on Meloidogyne incognita of green onion (allium fistulosum). Int J Bot Res 3(3):15–22

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 51–103

    Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanisms of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56:4474–4481

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368

    Article  CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42(3):279–283

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-González C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Ortega-Baes P, Rojas-Aréchiga M (2007) Seed germination of Trichocereus terscheckii (Cactaceae): light, temperature and gibberellic acid effects. J Arid Environ 69(1):169–176

    Article  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Parmar N, Dufresne J (2011) Beneficial interactions of plant growth promoting rhizosphere microorganisms. In: Singh A et al (eds) Bioaugmentation, biostimulation and biocontrol, soil biology 28. Springer, Berlin, pp 27–42. doi:10.1007/978-3-642-19769-7_2

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi:10.1128/AEM.68.8.3795-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perneel M, D'Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plantrhizobacteria interactions. Plant Cell Environ 26:189–199. doi:10.1046/j.1365-3040.2003.00956.x

    Article  CAS  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14(2):187–194

    Article  PubMed  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground, bacterial volatiles promote growth Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol:1183–1191

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Mushtaq A (2015) Plant growth promoting rhizobacteria, a formula for sustainable agriculture: a review. Asian J Plant Sci Res 5:43–46

    Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Rizvi R, Mahmood I, Tiyagi S (2013) Potential role of organic matters and phosphate solubilizing bacteria (PSB) on the growth and productivity of fenugreek. J Agric Sci Technol 15:639–647

    CAS  Google Scholar 

  • Rizvi R, Mahmood I, Ansari S (2016) Interaction between plant symbionts, bio-organic waste and antagonistic fungi in the management of Meloidogyne incognita infecting chickpea. J Saudi Soc Agric Sci

    Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, Teixeira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.) Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res LSMR, p 21

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indian Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26

    Google Scholar 

  • Saravanakumar D, Harish S, Loganathan M, Vivekananthan R, Rajendran L, Raguchander T et al (2007) Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mung bean. Arch Phytopathol Plant Prot 40:323–337

    Article  Google Scholar 

  • Sarma RK, Saikia RR (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRK21. Plant Soils 377:111–126

    Article  CAS  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Khalid A (2007a) Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J Microbiol 45:15–20

    CAS  PubMed  Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007b) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J Microbiol Biotechnol 17:1300–1307

    CAS  PubMed  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.) Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2015) Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Ferti Soils 51:321–330

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Google Scholar 

  • Shen C, Ni Y, Liang W, Wang J, Chu H (2015) Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol 6

    Google Scholar 

  • Singh N, Siddiqui ZA (2015) Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43:61–75

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001438

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao NS (1993) Biofertilizer in agriculture and forestry, 3rd edn. Oxford and IBH, New Delhi

    Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate solubilizing and -mineralizing abilities of bacteria isolated from. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, pp 1–50

    Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M, Touraine B, Moenne-Loccoz Y, Muller D (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19

    Article  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Yadav J (2012) Evaluation of plant growth promoting rhizobacteria and their effect on plant growth and grain yield of chickpea (Cicer arietinum L.) under sustainable agriculture Production. Agri Sci Engg (ICASE), 127

    Google Scholar 

  • Vijayan R, Palaniappan P, Tongmin SA, Elavarasi P, Manoharan N (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modelingand molecular docking study. World. J Pharm Pharm Sci 2:4079–4094

    Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res 1:35–38. doi:10.12944/CARJ.1.1.04

    Article  Google Scholar 

  • Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of betacystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61

    Article  CAS  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Zahir AA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Huang XF, Chaparro JM, Badri DV, Manter DK, Vivanco JM, Guo J (2016) Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401(1–2):259–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Ali Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ansari, R.A., Rizvi, R., Sumbul, A., Mahmood, I. (2017). PGPR: Current Vogue in Sustainable Crop Production. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_21

Download citation

Publish with us

Policies and ethics