Skip to main content

Endophytic Probiotics and Plant Health: Toward a Balanced Accost

  • Chapter
  • First Online:
Probiotics and Plant Health

Abstract

The endophytic probiotic microorganisms have been reported to be found in virtually each plant studied, where endophytes colonize the internal tissues of the host plant and they might form a variety of dissimilar and distinct associations that include but not limited to interdependency, positive and neutral cooperative, mutualistic, commensalistic, and also trophobiotic. Most of the endophytic microbiomes appear to originate either from the plant rhizosphere or the phyllosphere. However, some of the endophytes may also be transmitted through the seed. Probable endophytic microbes can enhance and accelerate the plant growth and production and, moreover, can also act as potential biocontrol agents. There are numerous potential fungal and bacterial endophytes that make indispensable secondary metabolites such as phytohormones, siderophores, volatile organic compounds, HCN production that support the development and progression of the host plant. Certain compounds produced by endophytes act as antibiotics which have possible antibacterial, antifungal, and insecticidal properties. These compounds intensely restrain the growth of pathogenic microorganisms, including the probable plant pathogens. On the other hand, these probable endophytic microbes can also be precious to human beings by producing a variety of natural products that could be utilized for the possible employment in medication, agronomy, or commerce. Additionally, it has been shown that endophytes too have the potential to eliminate the soil contaminants by enhancing bioremediation and phytoremediation process and, therefore, may play a remarkable role in soil fertility augmentation through notable and striking valuable processes such as biological nitrogen fixation, phosphate solubilization, metal chelation, and potassium mobilization. There is a growing and vested interest in development of biotechnological applications of probable endophytic microbes for improving crop production, phytoremediation, and sustainable production of food crops for biomass as well as biofuel production, which is a feasible and practical step toward the sustainable form of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MA (1991) Pyoverdines and pseudobactins. Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 139–153

    Google Scholar 

  • Adachi K, Nakatani M, Mochida H (2002) Isolation of an endophytic diazotroph, Klebsiella oxytoca, from sweet potato stems in Japan. Soil Sci Plant Nutr 48:889–895

    Article  Google Scholar 

  • Ali B, Hasnain S (2007) Potential of bacterial indoleacetic acid to induce adventitious shoots in plant tissue culture. Lett Appl Microbiol 45(2):128–133

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Trevor CC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–116

    Article  CAS  PubMed  Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Andreote FD, Rossetto PB, Mendes R, Avila LA, Labate CA, Pizzirani-Kleiner AA, Azevedo JL, Asraful Islam SM, Math RK, Kim JM, Yun MG, Cho JJ, Kim EJ, Lee YH, Yun HD (2010) Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Curr Microbiol 61:346–356

    Article  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quinõnes F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JL, Maccheroni J Jr, Pereira O, Ara WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electr J Biotechnol 3:40–65

    Article  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motto CM (2012) Richness of endophytic fungi from Opuntia fiscus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R (2006) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology 152:2421–2431

    Article  CAS  PubMed  Google Scholar 

  • Bohrer TRJ, Hungria M (1998) Availacao de cultivares de soja quanto a fixacao biologico do nitrogeno. Pesq Agrop Bras 33:937–953

    Google Scholar 

  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Joliver C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen cycling microbial communities at the landscape scale. ISME J 5:532–542

    Article  CAS  PubMed  Google Scholar 

  • Celloto VR, Oliveira AJB, José EG, Watanabe CSF, Graciette M, Regina ACG (2012) Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. ScientificWorldJournal 7:23–28

    Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. Forest Sci 43:99–112

    Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22:481–486

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen YX, Zhang LP, Lu ZT (2008) Analysis of the internal transcribed spacer (ITS) sequences in rDNA of 10 strains of Fusarium spp. J Anhui Agric Sci 36:4886–4887

    CAS  Google Scholar 

  • Chen Y, Fan JB, Du L, Xu H, Zhang QH, He YQ (2014) The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl Soil Ecol 84:235–244

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Cl C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant Microbe Interact 7:440–448

    Article  CAS  Google Scholar 

  • Costa PB, Granada CE, Ambrosini A, Moreira F, Souza R, Passos JFM, Arruda L, Passaglia LMP (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9:231–237

    Google Scholar 

  • Devaraju R, Sathish S (2011) EndophyticMycoflora of Mirabilis jalapa L. and studies on antimicrobial activity of its endophytic Fusarium sp. Asian J Expt Biol Sci 2(1):75–79

    Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearsonand V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • Fisher PJ, Petrini O, Scott HML (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.) New Phytol 122:299–305

    Article  Google Scholar 

  • Fryar SC, Yuen TK, Hyde KD, Hodgkiss IJ (2001) The influence of competition between tropical fungi on wood colonization in streams. Microbial Ecol 41(3):245–251

    Article  Google Scholar 

  • Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol Res 24(5):1067–1073

    Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present and future. Biogeochem 70:153–226

    Article  CAS  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110(3):318–327

    Article  PubMed  Google Scholar 

  • Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  • Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006

    Article  CAS  Google Scholar 

  • Grincko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodriguez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hamayun M, Afzal Khan S, Ahmad N (2009) Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25(4):627–632

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hata K, Atari R, Sone K (2002) Isolation of endophytic fungi from leaves of Pasania edulis and their within leaf distribution. Mycoscience 43:369–373

    Article  Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer strands. Mycoscience 49:229–232

    Article  Google Scholar 

  • He X, Han G, Lin Y, Tian X, Xiang C, Tian Q, Wang F, He Z (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27(2):273–284

    Article  Google Scholar 

  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain. J Appl Microbiol 103:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (2006) A complete guide to native orchids of Australia including the Island Territories. Reed New Holland Publishers, Sydney

    Google Scholar 

  • Joseph B, Mini Priya R (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1(3):291–309

    Article  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47:457–461

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52

    Google Scholar 

  • Korkama-Rajala T, Muller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow and fast growing Norway spruce (Picea abies) clones. Microbial Ecol 56(1):76–89

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kaushik N, Edrada-Ebel R, Ebel R, Proksch P (2011) Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World J Microbiol Biotechnol 27(3):571–577

    Article  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes inmangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Larran S, Simón MR, Moreno MV, Santamarina Siuranae MP, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in control of plant pathogens. Annu Rev Phytopathol 24(1):187–209

    Article  CAS  Google Scholar 

  • Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6(2):120–125

    Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    Article  PubMed  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol 193:527–541

    Article  CAS  PubMed  Google Scholar 

  • Madmony A, Chernin L, Pleban S, Peleg E, Riov J (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of mediterranean pines. Folia Microbiol 50:209–216

    Article  CAS  Google Scholar 

  • Melnick RL, Carmen S, Bryan AB, Paul AB (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol Control 57:236–245

    Article  Google Scholar 

  • Muller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10(7):1801–1810

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Sugawara M, Minamisawa K, Yuhashi KI, Ezura H (2008) 1-Aminocyclopropane-1-carboxylate deaminase producing Agrobacterium confers higher ability for gene transfer into plant cells. Appl Environ Microbiol 74:2526–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivares J, Bedmar EJ, Sanjuán J (2013) Biological nitrogen fixation in the context of global change. Mol Plant Microbe Interact 26(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osono T (2003) Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44(1):41–45

    Article  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52(8):701–716

    Article  CAS  PubMed  Google Scholar 

  • Osono T, Hirose D (2009) Effects of prior decomposition of Camellia japonica leaf litter by an endophytic fungus on the subsequent decomposition by fungal colonizers. Mycoscience 50(1):52–55

    Article  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745–750

    Article  PubMed  PubMed Central  Google Scholar 

  • Porteous-Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell D, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  Google Scholar 

  • Posada F, Vega FE (2006) Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycoscience 47(5):284–289

    Article  Google Scholar 

  • Prittila AM, Lankkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  Google Scholar 

  • Prittila AM, Pospiech H, Lankkanen H (2003) Two endophytic fungi in different tissues of Scot pine buds (Pinus sylvestris L.). Microbial Ecol 45:53–62

    Article  CAS  Google Scholar 

  • Prittila AM, Hohtola A, Ivanova EG (2008) Identification and localization of methylotrophic plant associated bacteria. In: Sorvari S, Prittila AM (eds) Prospects and application for plant associated microbes. A laboratory manual, Part A: bacteria. Biobien Innovationa, Turku, pp 218–224

    Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microb Biotechnol 23:853–858

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144

    Article  CAS  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. Am J Bot 100(9):1726–1737

    Article  CAS  PubMed  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–161

    Google Scholar 

  • Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain P. agglomerans on and within winter wheat: an investigation using ELISA and transmission microscopy. Plant Soil 145:261–273

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109(1):121–126

    Google Scholar 

  • Schouten A (2016) Mechanisms involved in nematode control by endophytic fungi. Annu Rev Phytopathol 54:121–142

    Article  CAS  PubMed  Google Scholar 

  • Selim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI (2011) Biodiversity and antimicrobial activity of endophytes associated with Egyptian medicinal plants. Mycosphere 2(6):669–678

    Article  Google Scholar 

  • Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT (2006) Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol 22(11):1185–1195

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole- 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stijn S, Jos V, Roseline R (2007) Indole-3-acetic acid in microbial and microorganism plant Signaling. FEMS Microbiol Rev 31:1–24

    Article  CAS  Google Scholar 

  • Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  CAS  PubMed  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Luduena L, Pena D, Ibanez F, Fabra A (2010) Phosphate solubilizing peanut associated bacteria: screening for plant growth promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54(5):663–669

    Article  Google Scholar 

  • Terekhova VA, Semenova TA (2005) The structure of micromycete communities and their synecologic interactions with basidiomycetes during plant debris decomposition. Microbiol 74(1):91–96

    Article  CAS  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  • Thongsandee W, Matsuda Y (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J Forest Res 17(2):213–218

    Article  Google Scholar 

  • Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

    Article  CAS  PubMed  Google Scholar 

  • Thormann M, Currah RS, Bayley SE (2003) Succession of microfungal assemblages in decomposing peatland plants. Plant Soil 250(2):323–333

    Article  CAS  Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178

    Article  CAS  PubMed  Google Scholar 

  • Torres AR, Araújo WL, Cursino L, Hungria M, Plotegher F, Mostasso FL, Azevedo JL (2008) Diversity of endophytic enterobacteria associated with different host plants. J Microbiol 46(4):373–379

    Article  CAS  PubMed  Google Scholar 

  • Uma Maheswari T, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2(6):127–136

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velázquez E, Rodríguez-Barrueco C, Cervantes E, Chamber M, Igual J-M (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Varsha YM, Deepthi N, Chenna S (2011) An emphasis on xenobiotic degradation in environmental cleanup. J Bioremediat Biodegrd S11:001

    Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Boulanger LA, Strobel GA (2011) Endophytic fungal flora from roots and fruits of an Indian neem plant Azadirachta indica A. Juss., and impact of culture media on their isolation. Indian J Microbiol 51(4):469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Hu T, Jiao Y, Wei J, Cao K (2009) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China 3(3):247–252

    Article  Google Scholar 

  • Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soil 45(6):669–674

    Article  CAS  Google Scholar 

  • Yi HS, Yang ZW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Youngbae S, Kim S, Park CW (1997) A phylogenetic study of polygonumsect. tovara (polygonaceae) based on ITS sequences of nuclear ribosomal DNA. Plant Biol 40:47–52

    Article  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris BN (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Teotia, P., Kumar, M., Prasad, R., Sharma, S., Kumar, V. (2017). Endophytic Probiotics and Plant Health: Toward a Balanced Accost. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_17

Download citation

Publish with us

Policies and ethics