Skip to main content

Range of Microbial Disease Complexes with Meloidogyne Species and Role of Botanicals in Management

  • Chapter
  • First Online:

Abstract

Plant diseases are economically very important. The increasing realization of role of plant niche environment particularly the rhizosphere has triggered the application of management strategies to manage soilborne diseases below threshold. Among these regulatory strategies, one important aspect is to break the pathogenic symbioses as disease complexes. The present chapter has been divided into two parts: the first part focuses on the important soil pathogens in the vicinity with host plants with the role of edaphic climate in their association as disease complexes, while the second one deals with the changing strategy of soil environment using eco-friendly botanicals to discourage formation of disease complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abawi GS, Barker KR (1984) Effects of cultivar, soil temperature, and population levels of Meloidogyne incognita on root-necrosis and Fusarium wilt of tomatoes. Phytopathology 74:433–438

    Article  Google Scholar 

  • Abdel-Aziez SM, Eweda WE, Girgis MGZ, Ghany BFA (2014) Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Ann Agric Sci 59:95–108

    Google Scholar 

  • Abdel-Momen SM, Starr JL (1998) Meloidogyne javanica-Rhizoctonia solani disease complex of peanut. Fundam Appl Nematol 21:611–616

    Google Scholar 

  • Abid M, Zaki MJ, Maqbool MA (1995) Neem derivatives for the control of root-knot nematode (Meloidogyne javanica) on okra. Pak J Phytopathol 7:212–214

    Google Scholar 

  • Agrios G (2005) Plant pathology. Elsevier Academic Press, Burlington

    Google Scholar 

  • Ahmad MU (1989) Effect of mustard oil-cake as organic amendment on the root-knot of brinjal. Bangladesh J Agric Sci 16:257–259

    Google Scholar 

  • Ahmed ZM, Dawar S, Tariq M (2009) Fungicidal potential of some local tree seeds for controlling root rot disease. Pak J Bot 41:1439–1444

    Google Scholar 

  • Akhtar M (2000) Nematicidal potential of the neem tree Azadirachta indica (a. Juss). Integr Pest Manag Rev 5:57–66

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Glomus intraradices, Pseudomonas alcaligenes and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.) J Gen Plant Pathol 74:53–60

    Article  Google Scholar 

  • Alam MM (1991) Control of plant parasitic nematodes with oil seed cakes on some vegetables in field. Pak J Nematol 9:21–30

    Google Scholar 

  • Alam MM, Jairajpuri MS (1990) Nematode control strategies. In: Jairajpuri MS, Alam MM, Ahmad I (eds) Nematode biocontrol (aspects and prospects). CBS Publisher and Distributors, Delhi, pp 5–15

    Google Scholar 

  • Alam S, Akhtar N, Begum MF, Banu MS, Islam MR, Chowdhury AN, Alam MS (2002) Antifungal activities (In vitro) of some plant extracts and smoke on four fungal pathogens of different hosts. Pak J Biol Sci 5:307–309

    Article  Google Scholar 

  • Amin KS, Sequeira L (1966) Phytotoxic substances from decomposing lettuce residues in relation to etiology of corky root rot of lettuce. Phytopathology 56:1054–1061

    CAS  Google Scholar 

  • Anderson NA (1982) The geneticsa nd pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Ansari N, Azam MF (2005) Pathogenecity of root-knot nematode, Meloidogyne incognita on green gram. Bionotes 7:102

    Google Scholar 

  • Arya A, Saxena SK (1999) Influence of certain rhizosphere fungi together with Rhizoctonia solani and Meloidogyne incognita on germination of “Pusa ruby” tomato seeds. Indian. Phytopathology 52:121–126

    Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Prot 43:609–614

    Article  Google Scholar 

  • Baby UI, Manibhushanrao K (1996) Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease. Mycorrhiza 6:201–206

    Article  Google Scholar 

  • Back MA, Jenkinson P, Haydock PPJ (2000) The interaction between potato cyst nematodes and Rhizoctonia solani diseases in potatoes. In: Proceedings of the Brighton crop protection conference, pests and diseases. Farnham, British Crop Protection Council, pp 503–506

    Google Scholar 

  • Back MA, Haydock PPJ, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soil-borne pathogens. Plant Pathol 51:683–697

    Article  Google Scholar 

  • Bailey KL, Lazarovits GL (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bar-Eyal M, Sharon E, Spiegel Y (2006) Nematicidal activity of Chrysanthemum coronarium. Eur J Plant Pathol 114:427–433

    Article  Google Scholar 

  • Batten CK, Powel NT (1971) The Rhizoctonia – Meloidogyne disease complex in flue–cured tobacco. J Nematol 3:164–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeson GB (1972) Concepts of nematode-fungus associations in plant disease complexes: a review. Exp Parasitol 32:301–314

    Article  CAS  PubMed  Google Scholar 

  • Berkeley MJ (1855) Vibrio forming cysts on the roots of cucumbers. Gardener’s chronicle and agricultural. Gazette 14:220

    Google Scholar 

  • Bertrand B, Nuñez C, Sarah JL (2000) Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporum. Plant Pathol 49:383–388

    Article  Google Scholar 

  • Bhatt J, Vadhera I (1997) Histopathological studies on cohabitation of Pratylenchus thornei and Rhizoctonia bataticola on chickpea (Cicer arietinum L.) Adv Plant Sci 10:33–38

    Google Scholar 

  • Bhosle BB, Sehgal M, Puri SN, Das S (2004) Prevalence of phytophagous nematodes in rhizosphere of okra (Abelmoschus esculentus L. Moench) in Parbhani District, Maharashtra, India. Indian J Nematol 34:56–59

    Google Scholar 

  • Bird DM, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Mol Plant Pathol 62:115–123

    Article  Google Scholar 

  • Brodie BB, Cooper WE (1964) Relalion of parasitic nematodes to postemergence damping-off of cotton. Phytopathology 54:1023–1027

    Google Scholar 

  • Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5:1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo P, Mora-Rodriguez MP, Navas-Cortes JA, Jimenez-Diaz RM (1998) Interactions of Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on chickpea. Phytopathology 88:828–836

    Article  CAS  PubMed  Google Scholar 

  • Chand CD (2004) Pathogenecity of Meloidogyne incognita on Allium hookerii. J Appl Zoolog Res 15:70–71

    Google Scholar 

  • Cook RJ (1977) Management of the associated microbiota. In: Horsfall JG, Cowling EB (eds) Plant disease. Academic Press, New York, pp 145–160

    Google Scholar 

  • Darekar KS, Mhase NL, Shelke SS (1990) Effect of placement of non-edible oilseed cakes on the control of root-knot nematodes on tomato. International nematology network. Newsletter 7:5–7

    Google Scholar 

  • Dawar S, Younus SM, Tariq M, Zaki MJ (2007) Use of Eucalyptus sp., in the control of root infecting fungi on mung bean and chickpea. Pak J Bot 39:975–979

    Google Scholar 

  • De Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz ACGS, Alcantara N, Martinez MB, Giron JA (2003) Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol 5:625–636

    Article  PubMed  CAS  Google Scholar 

  • De RK, Ali SS, Dwivedi RP (2001) Effect of interaction between Fusarium oxysporum f.sp. lentil and Meloidogyne javanica on lentil. Indian J Pulses Res 14:71–73

    Google Scholar 

  • Debprasad R, Prasad D, Singh RP, Ray D (2000) Chemical examination and antinemic activity of marigold (Tagetes erecta L.) flower. Ann Plant Prot Sci 8:212–217

    Google Scholar 

  • Devakumar C, Goswami DK, Mukerjee SK (1985) Nematicida principles from neem (Azadirachta indica a. Juss.). Part 1. Screening of neem kernel fractions against Meloidogyne incognita. Ind J Nematol 15:121–124

    Google Scholar 

  • Dias CR, Schwan AV, Ezequiel DP, Sarmento MC, Ferraz S (2000) Efeito de extratos aquosos de plantas medicinais na sobrevivencia de juvenis de Meloidogyne incognita. Nematol Bras 24:203–210

    Google Scholar 

  • Diomande M, Black MC, Beute MK, Barlœr KR (1981) Enhancement of Cylindrociadium crotalariae root-rot by Meloidogyne arenaria (race 2) on a peanut cultivar resistant to both pathogens. J Nematol 13:321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118–127

    Article  Google Scholar 

  • Dubey RC, Kumar H, Pandey RR (2009) Fungitoxic effect of neem extracts on growth and sclerotial survival of Macrophomina phaseolina in vitro. J Am Sci 5:17–24

    Google Scholar 

  • Ehteshamul-haque S, Zaki MJ, Vahidy AA (1998) Effect of organic amendments on the efficacy of Pseudomonas aeruginosa in the control of root rot disease of sunflower. Pak J Bot 30:45–50

    Google Scholar 

  • Ekenma AGWUJ, Chidera EZIGBOJ (2005) Effect of Meloidogyne incognita (root- knot nematode) on the development of Abelmoschus esculentus (okra). Anim Res Int 2:358–362

    Google Scholar 

  • Emmanuel S, Rani MS, Sreekanth MR (2010) Antidiabetic activity of Cassia occidentalis Linn. In streptozotocin-induced diabetic rats: a dose dependent study. Int J Pharm Bio Sci 1:14–25

    Google Scholar 

  • Fassuliotis G, Skucas GP (1969) The effect of a pyrrolizidine alkaloid ester and plants containing pyrrolizidine on Meloidogyne incognita acrita. J Nematol 1:287–288

    Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JS, Sivasithamparam K, KRJ S (2000) Soil types with different texture affects development of Rhizoctonia root rot of wheat seedlings. Plant Soil 221:113–120

    Article  CAS  Google Scholar 

  • Gill JS, Sivasithamparam K, KRJ S (2001) Effect of soil moisture at different temperatures on Rhizoctonia root rot of wheat seedlings. Plant Soil 231:91–96

    Article  CAS  Google Scholar 

  • Golden JK, Van Gundy SD (1975) A disease complex of okra and tomato involving the nematode, Meloidogyne incognita and the soil-inhabiting fungus, Rhizoctonia solani. Phytopathology 65:265–275

    Article  CAS  Google Scholar 

  • Gommers FJ, Bakker J (1988) Physiological diseases induced by plant response or products. In: Poinar GO, Jansson HB (eds) Diseases of nematodes, vol 1. CRC Press, Boca Raton, Florida, pp 3–22

    Google Scholar 

  • Goswami BK (1993) Effect of different soil amendments with neem cake on root-knot nematode and soil mycoflora in cowpea rhizosphere. Indian J Plant Prot 21:87–89

    Google Scholar 

  • Goswami BK, Vijayalakshmi K (1986) Efficacy of some indigenous plant material and non edible oil seed cakes against Meloidogyne incognita on tomato. Indian J Nematol 16:280–181

    Google Scholar 

  • Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot (Tokyo) 29:987–999

    Article  CAS  Google Scholar 

  • Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340

    Google Scholar 

  • Hafez SL, Al-Rehiayani S, Thornton M, Sundararaj P (1999) Differentiation of two geographically isolated populations of Pratylenchus neglectus based on their parasitism of potato and interaction with Verticillium dahliae. Nematropica 29:25–36

    Google Scholar 

  • Hazarika BP, Roy AK (1974) Effect of Rhizoctonia solani on the reproduction of Meloidogyne incognita on egg plant. Indian J Nematol 4:246–247

    Google Scholar 

  • Hussain MA, Mukhtar T, Kayani MZ (2011) Assessment of the damage caused by Meloidogyne incognita on okra (Abelmoschus esculentus). J Anim Plant Sci 21:857–861

    Google Scholar 

  • Hussey RS (1985) Host parasite relationships and associated physiological changes. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne. North Carolina State University Graphics, Raleigh, pp 143–153

    Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Article  Google Scholar 

  • Jacobsen JB (2006) Root rot diseases of sugar beet. Proc Natl Acad Sci 110:9–19

    Google Scholar 

  • Javed N, Anwar SA, Fyaz S, Khan MM, Ashfaq M (2008) Effects of neem formulations applied as soil drenching on the development of root-knot nematode Meloidogyne javanica on roots of tomato. Pak J Bot 40:905–910

    Google Scholar 

  • Jeyarajan R, Doraiswamy S, Bhaskaran R, Jayaraj S, Draiswamy S, Schmuttere S (1987). Effect of neem (Azadirachta indica) and other plant products in the management of plant disease in India. In: Natural pesticides from the Neem tree, Azadirachta indica a. Juss and other tropical plants, pp 635–644.

    Google Scholar 

  • Johnson DA, Santo GS (2001) Development of wilt in mint in response to infection by two pathotypes of Verticillium dahliae and co-infection by Pratylenchus Penetrans. Plant Dis 85:1189–1192

    Article  Google Scholar 

  • Jonathan EI, Gajendran G, Arulmozhiyan R (1997) Interaction of Rotylenchulus reniformis and Phytophthora palmivora on betelvine. Nematol Mediterr 25:191–193

    Google Scholar 

  • Kaitany R, Melakeberhan H, Bird GW, Safir G (2000) Association of Phytophthora sojae with Heterodera glycines and nutrient stressed soybeans. Nematropica 30:193–199

    Google Scholar 

  • Kankam F, Adomako J (2014) Influence of inoculum levels of root knot nematodes (Meloidogyne spp.) on tomato (Solanum lycopersicum L.) Asian J Agric Food Sci 2:171–178

    Google Scholar 

  • Khalil MS (2013) Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J Plant Pathol Microbiol 4:174–183

    Article  CAS  Google Scholar 

  • Khan MW (1993) Mechanism of interactions between nematodes and other plant pathogens. In: Khan MW (ed) Nematode interactions. Chapman and Hall, London, pp 55–78

    Chapter  Google Scholar 

  • Khan MR, Haque Z (2011) Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco. Phytopathol Mediterr 50:257–266

    CAS  Google Scholar 

  • Khan TA, Saxena SK (1997) Effect of root-dip treatment with fungal filtrates on root penetration, development and reproduction of Meloidogyne javanica on tomato. Int J Nematol 7:85–88

    Google Scholar 

  • Khan TA, Ashraf MS, Hasan S (2006) Pathogenicit and life cycle of Meloidogyne javanica on balsam (Impatiens balsamia). Arch Phytopathol Plant Prot 39:45–48

    Article  Google Scholar 

  • Khan TA, Ashraf MS, Dar RA (2008) Pathogenecity and life cycle of Meloidogyne javanica on broccoli. Arch Phytopathol Plant Prot 43:602–608

    Article  Google Scholar 

  • Khanna AS, Jyoti J (2004) Pathogenicity of Meloidogyne incognita on Dianthus caryophillus. Phytopathol Mediterr 32:125–126

    Google Scholar 

  • Khanna AS, Nattuthurai N, Vaitheeswaran M, Rathinavathy J, Reuben R (1987). Control of plant parasitic nematode with organic amendments. In: Proceedings of the symposium alternatives to synthetic insecticides in integrated pest management systems, Madurai, pp 223–321.

    Google Scholar 

  • Kim DH (2013) Bacteria and the aging and longevity of Caenorhabditis Elegans. Annu Rev Genet 47:233–246

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard JA, Gardner PA, Desmarchelier JM, Angus JF (1993). Biofumigation using Brassica species to control pests and diseases in horticulture and agriculture. In: Wratten N, Mailer RJ (eds) Proceedings 9th Australian Research Assembly on Brassicas Agricultural Research Institute, Wagga, pp 77–82.

    Google Scholar 

  • Koike ST, Subbarao KV, Davis RM, Turini TA. (2003). Vegetable diseases caused by soilborne pathogens. ANR University of California, Publication 8099.

    Google Scholar 

  • Komarek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151

    Article  CAS  PubMed  Google Scholar 

  • Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    Article  CAS  Google Scholar 

  • Kühn J (1858). Die Krankheiten der Kulturgewachse, ihre Ursachen und Verhutung.

    Google Scholar 

  • Kuprashvili TD (1996) The use phytocides for seed treatment. Zashchita-I- Karantin- Rastenii 55:31

    Google Scholar 

  • Lemanczyk G (2010) Occurrence of sharp eyespot in spring cereals grown in some regions of Poland. J Plant Prot Res 50:505–512

    Google Scholar 

  • Linford MB, Yap F, Oliveira JM (1938) Reduction of soil population of root-knot nematode during decomposition of organic matter. Soil Sci 45:127–141

    Article  Google Scholar 

  • Lucas GB, Campbell CL, Lucas LT (1997) Introduction to plant disease identification and management. CBS Publishers and Distributors, New Delhi, p 364

    Google Scholar 

  • Lumsden RD, Lewis JA, Millner PD (1983) Effect of composted sewage sludge on several soilborne plant pathogens and diseases. Phytopathology 73:1543–1548

    Article  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in Soilborne Pest and disease management. Crit Rev Plant Sci 25:235–265

    Article  CAS  Google Scholar 

  • McSorley R, Dickson DW (1995) Effect of tropical rotation crops on Meloidogyne incognita and other plant-parasitic nematodes. J Nematol 27:535–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan S, Fould S, Davies G (2001) The interaction between the gelatin-binding domain of fibronectin and the attachement of Pasteuria penetrans endospores to nematode cuticle. Parasitology 123:271–276

    Article  CAS  PubMed  Google Scholar 

  • Mojumdar V, Mishra SD (1993) Soil application of aqueous extracts of neem products for the management of Meloidogyne Incognita in chickpea. Curr Nematol 4:105–107

    Google Scholar 

  • Mokbel AA, Ibrahim IKA, Shehata MRA, El-Saedy MAM (2007) Interaction between certain root-rot fungi and the root-knot nematode, Meloidogyne incognita on sunflower plants. Egypt J Phytopathol 35:1–11

    Google Scholar 

  • Mukhtar T, Kayani MZ, Hussain MA (2013) Response of selected cucumber cultivars to Meloidogyne incognita. Crop Prot 44:13–17

    Article  Google Scholar 

  • Mumm R, Burow M, Bukovinszkine’kiss G, Kazantzidou E, Wittstock U, Dicke M, Gershenzon J (2008) Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J Chem Ecol 34:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Nicolay R, Sikora RA (1991) Interrelationships between fungal egg parasitism in Heterodera schachtii (Schmidt) and nematode population density. Rev Nematol 14:231–249

    Google Scholar 

  • Nogueira MA, de Oliveira JS, Ferraz S, Dos Santos MA (1996) Nematicidal constituents in Mucuna aterrima and its activity on Meloidogyne incognita race 3. Nematol Mediterr 24:249–252

    Google Scholar 

  • Ntalli G, Caboni P (2012) Botanical nematicides: A review. J Agric Food Chem 60:9929–9940

    Article  CAS  PubMed  Google Scholar 

  • Oduor-Owino P (2003) Control of root-knot nematodes in Kenya with aldicarb and selected antagonistic plants. Nematol Mediterr 31:125–127

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments–a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Osunlaja SO (1990) Effect of organic soil amendments on the incidence of stalk rot of maize caused by Macrophomina phaseolina and Fusarium moniliforme. J Basic Microbiol 30:753–757

    Article  Google Scholar 

  • Patrick ZA, Toussoun TA (1965) Plant residue and organic amendments in relation to biological control. In: Baker KF, Synder WC (eds) Ecology of soil-borne plant pathogens. John Murray, London, pp 440–459

    Google Scholar 

  • Rao U, Goswami BK (1996) Comparative efficacy of soil amendments with carbofuran against root-knot nematode, Meloidogyne incognita on cowpea. Pest Res J 8:87–89

    Google Scholar 

  • Richards BN (1976) Introduction to the soil ecosystem. Longman, London

    Google Scholar 

  • Ritzinger CHSP, McSorley R (1998) Effect of castor and velvetbean organic amendments on Meloidogyne arenaria in greenhouse experiments. J Nematol 30:624–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 148:524–526

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez-Kabana R, Robertson DG, Wells L, King PS, Weaver CF (1989) Crops uncommon to Alabama for the management of Meloidogyne arenaria in peanut. J Nematol 21:712–716

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today 93:56–66

    Article  CAS  PubMed  Google Scholar 

  • Rupe JC, Robbins RT, Becton CM, Sabbe WA, Gbur EE (1999) Vertical and temporal distribution of Fusarium solani and Heterodera glycines in fields with sudden death syndrome of soybean. Soil Biol Biochem 31:245–251

    Article  CAS  Google Scholar 

  • Ryss AY, Kulinich OA, Sutherland JR (2011) Pine wilt disease: a short review of worldwide research. Forestry Sci China 13:1–11

    Article  Google Scholar 

  • Safiuddin A, Shahab S (2012) Interactive effect of root-knot nematode, Meloidogyne incognita and root-rot fungus, Rhizoctonia solani, on okra [Abelmoschus esculentus L.] Arch Phytopathol Plant Prot 45:660–666

    Article  Google Scholar 

  • San Martin R, Magunacelaya JC (2005) Control of plant–parasitic nematodes with extracts of Quillaja saponaria. Nematology 7:577–585

    Article  CAS  Google Scholar 

  • Sayre RM, Patrick ZA, Thorpe JH (1964) Substances toxic to plant parasitic nematodes in decomposing plant residue. Phytopathology 54:905

    Google Scholar 

  • Siddiqui ZA, Husain SI (1991) Interaction of Meloidogyne incognita race-3 and Macrophomina phaseolina in a root-rot disease complex of chickpea. Nematol Mediterr 19:237–239

    Google Scholar 

  • Siddiqui IA, Shaukat SS, Khan GH, Zaki MJ (2002) Evaluation of Argemone mexicana for control of root-infecting fungi in tomato. J Phytopathol 150:321–329

    Article  Google Scholar 

  • Sikora RA, Fernandez E (2005). Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, p 319–392.

    Google Scholar 

  • Singh, S.K, Khan, M.R. and Khan, A.A. (1990). Control of root-knot nematode, Meloidogyne incognita by organic amendment on tomato cv. Pusa Ruby. Indian Journal of Applied and Pure Biology, 5:21–23.

    Google Scholar 

  • Sitaramaiah K (1990) Mechanism of reduction of plant parasitic nematodes in soils amended with organic materials. In: Saxena SK, Khan MW, Rashid A, Khan RM (eds) Progress in plant nematology. CBS Publishers and Distributors, New Delhi, pp 263–265

    Google Scholar 

  • Sitaramaiah K, Pathak KN (1993) Nematode bacterial disease interactions. In: Khan MW (ed) Nematode interactions. Chapman and Hall, New York, pp 232–250

    Chapter  Google Scholar 

  • Sneh, B, Jabaji-Hare, S, Neate, S. and Djist, G. (1996). Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Publishiers, Dordrecht, The Netherlands, Chapter V, pp. 247–404 and Chapter VIB, pp. 445–559.

    Google Scholar 

  • Spadaro D, Gullino LM (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prod 24:601–613

    Article  Google Scholar 

  • Starr JL, Aist JR (1977) Early development of Pythium polymorphon on celery roots infected by Meloidogyne hapla. Phytopathology 67:497–501

    Article  Google Scholar 

  • Starr JL, Martyn RD, Jeger MJ, Schilling K (1989) Effect of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum on plant mortaliry and yield of cotton. Phytopathology 79:640–646

    Article  Google Scholar 

  • Sultana V, Ehteshamul-Haque S, Ara J, Akhtar M (2005) Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int J Environ Sci Technol 2:129–132

    Article  Google Scholar 

  • Tariq M, Dawar S, Mehdi FS, Zaki MJ (2006) Use of Avicennia marina in the control of root infecting fungi on okra and mash bean. Pak J Bot 38:811–815

    Google Scholar 

  • Tariq M, Dawar S, Mehdi FS, Zaki MJ (2008) The effect of mangroves amendments to soil root rot and root-knot of potato (Solanum tuberosum L.) Acta Agrobot 61:115–121

    Article  Google Scholar 

  • Timchenko LS, Maiko TK (1989). Nematicidal properties of plants-antagonists of nematodes of decorative plants. Byulleten’ Vsesoyuznogo Instituta Gel’mintologii im. K.I. Skryabina No 50:81–84.

    Google Scholar 

  • Tiyagi SA, Alam MM (1995) Efficacy of oil seed cakes against plant-parasitic nematodes and soil inhabiting fungi on chickpea and mungbean. Bioresour Technol 51:233–239

    Article  CAS  Google Scholar 

  • Vats R, Dalal MR (1997) Interaction between Rotylenchulus reniformis and Fusarium oxysporum f.sp. pisi on pea (Pisum sativum L.) Ann Biol 13:239–242

    Google Scholar 

  • Wheeler TA, Hake KD, Dever JK (2000) Survey of Meloidogyne incognita and Thielaviopsis basicola: their impact on cotton fruiting and producers’ management choices in infested fields. J Nematol 32:576–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widmer TL, Abawi GS (2000) Mechanism of suppression of Meloidogyne hapla and its damage by a green manure of sudangrass. Plant Dis 84:562–568

    Article  Google Scholar 

  • Widmer TL, Abawi GS (2002) Relationship between levels of cyanide in sudangrass hybrids incorporated into soil and suppression of Meloidogyne hapla. J Nematol 34:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Babu S, Yadav MK, Singh K, Yadav GS, Pal S (2013) A review of organic farming for sustainable agriculture in northern India. Int J Agron. doi:10.1155/2013/718145

  • Zacheo G, Lamberti F, Arrigoni-Liso R, Arrigoni O (1977) Mitochondrial protein-hydroxyproline content of susceptible and resistant tomatoes infected by Meloidogyne incognita. Nematologica 23:471–476

    Article  CAS  Google Scholar 

  • Zasada IA, Meyer SL, Halbrendt JH, Rice C (2005) Activity of hydroxamic acids from Secale cereale against the plant–parasitic nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathology 95:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Zasada IA, Rice CP, Meyer SLF (2007) Improving the use of rye (Secale cereale) for nematode management: potential to select cultivars based on Meloidogyne incognita host status and benzoxazinoid content. Nematology 9:53–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Safiuddin, Rizvi, R., Mahmood, I. (2017). Range of Microbial Disease Complexes with Meloidogyne Species and Role of Botanicals in Management. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_16

Download citation

Publish with us

Policies and ethics