Skip to main content

Carriers and Their Role in Plant Agrosystem

  • Chapter
  • First Online:
Book cover Probiotics and Plant Health
  • 1961 Accesses

Abstract

The population explodes and the concerns of biomagnifications by the use of synthetic pest control methods are two major problems that have created the major food crop crises in the world. To eradicate the problem, various green practices like bioformulations, mixed cropping, etc. have been designed and implicated, but almost all of them had delivery constraints, and to minimize this, effective delivery model was needed. The researchers in the quest designed a model that was harmless, stable, and inert and that did not interfere with biocontrol activity against pest which can be used at time of harvesting and postharvesting as well as to increase the shelf life; such models were called as carriers. Various types of carriers have been studied and applied, but the rate of biocontrol is still yet to reach the optimum. So it becomes necessary to gain an insight into the constraints in effective biocontrol and retrospect the best practices to minimize the constraints.

This chapter throws light on carriers, their types, their formation and inoculation, and finally their role in plant agrosystem which will further help the researchers in designing the cost-effective and efficient carrier with minimum delivery constraints and eliciting maximum biocontrol to finally eradicate the use of synthetic pest control practices from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA (2001) Survival of Rhizobia/Bradyrhizobia and a rock phosphate-solubilizing fungus Aspergillus niger on various carriers from agro-industrial wastes and their effects on nodulation and growth of faba bean and soya bean. J Plant Nutr 24(2):261–272

    Article  CAS  Google Scholar 

  • Aino M, Maekaua Y, Mayama S, Kato H (1997) Biocontrol of bacteria wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp 120–123

    Google Scholar 

  • Amer GA, Utkhede RS (2000) Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol 46:809–816

    Article  CAS  PubMed  Google Scholar 

  • Ardakani SS, Hedari A, Tayebi L, Mohammadi M (2010a) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6:95–100

    Article  Google Scholar 

  • Ardakani SS, Heydari A, Khorasani N, Arjmandi R (2010b) Development of new bioformulations of Pseudomonas fluoroscens and evaluation of these products against damping-off of cotton seedlings. J Plant Pathol 92(1):83–88

    Google Scholar 

  • Arjomandzadegan M, Salimi H, Fatemi AZ, Owlia P (2013) Evaluation of appropriate carriers for bio-control agents of apple fire blight. Egypt J Pest Control 23(1):31–34

    Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints development and future of the bioinoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, pp 241–254

    Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repens. Curr Sci 95(1):90–94

    Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth-promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116

    Google Scholar 

  • Arora NK, Tiwari S, Singh R (2014) Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainable agriculture. J Plant Pathol Microbiol 5:229

    Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Bahl N, Jauhri S (1986). Spent compost as a carrier for bacterial inoculant production. In: Proceedings of the international symposium on scientific and technological aspects of cultivating edible fungi. The Pennsylvania State University, University Park, PA, pp 63–68

    Google Scholar 

  • Bailey RC, Kindt JT, Qavi AJ (2010) Sizing up the future of microRNA analysis. Anal &Bioanal Chem, 398(6):2535–2549

    Google Scholar 

  • Bansal RK, Dahiya RS, Lakshminarayana K, Suneja S, Anand RC, Narula N (1999) Effect of rhizospheric bacteria on plant growth of wheat infected with Heterodera avenae. Nematol Mediterr 27:311–314

    Google Scholar 

  • Barkai-Golan R (2001) Postharvest diseases of fruits and vegetables. Dev Control:183–245

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Bashan LE, Prabhu SR, Hernandez J (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Belloti AC, Cardona C, Lapointe SL (1990) Trends in pesticide use in Colombia and Brazil. J Agric Entomol 7:191–201

    Google Scholar 

  • Bhattacharjee R, Utpal D (2013) Biofertilizer: a way towards organic agriculture; a review. Af J Micro Res 8(24):2332–2343

    Google Scholar 

  • Bissonnette N, Lalande R (1988) High survivability of cheese Whey-Grown Rhizobium meliloti cells upon exposure to physical stress. Appl Environ Microbiol 54(1):183–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152:471–475

    Article  Google Scholar 

  • Bouillant ML, Miché L, Ouedraogo O, Alexandre G, Jacoud C, Sallé G, Bally R (1997) Inhibition of Striga seed germination associated with sorghum growth promotion by soil bacteria. C R Acad Sci Paris Sci de la vie 320:159–162

    Article  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41(2):323–342

    Article  CAS  Google Scholar 

  • Brockwell J (1977) Application of legume seed inoculants. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation section 4 agronomy and ecology. Wiley, New York, pp 277–309

    Google Scholar 

  • Callaghan A, Guillemaud T, Makate N, Raymond M (1998) Polymorphisms and fluctuations in copy number of amplified esterase genes in Culex pipiens mosquitoes. Insect Mol Biol 7(3):295–300

    Article  CAS  PubMed  Google Scholar 

  • Catroux G, Richard G, Chenu C, Duquenne P (1999) Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS MicrobiolEcol 29:331–339

    Google Scholar 

  • Ceaser AJ, Burr TJ (1991) Effect of conditioning, betaine and sucrose on rhizobacteria in powder formulations. Appl Environ Microbiol 57:168–172

    Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard Brassica campestris. Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chao WL, Alexander M (1984) Mineral soil as carriers for rhizobium inoculants. Appl Environ Microbiol 47(1):94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Qiana Y, Chenb O, Taoc C, Lib C, Lia Y (2011) Evaluation of pesticide residues in fruits and vegetables from Xiamen China. Food Control 22(7):1114–1120

    Article  CAS  Google Scholar 

  • Chen KN, Chen CY, Lyn YC, Chen MJ (2013) Formulation of a novel antagonistic bacterium based biopesticide for fungal disease control using microencapsulation techniques. J Agric Sci 5(3):153–163

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1990) Twenty-five years of progress towards biological control. In: Horny D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 1–14

    Google Scholar 

  • Daza A, Santamaria C, Rodriguez-Navarro DN, Camacho M, Orive R, Temprano F (2000) Perlite as a carrier for bacterial inoculants. Soil Biol Biochem 32:567–572

    Article  CAS  Google Scholar 

  • De Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duchesne RM, Laguë C, Khelifi M, Gill J (2001) Thermal control of Colorado potato beetle. In: Vincent C, Panneton B, Fleurat-Lessard F (eds) Physical control methods in plant protection. Springer, Berlin, pp 61–73

    Google Scholar 

  • Dureja P, Singh SB, Parmar BS (2015) Pesticide maximum residue limit (MRL): background, Indian scenario. Pestic Res J 27(1):4–22

    CAS  Google Scholar 

  • EEA (2015) European Environment: State and Outlook 2015: Assessment of Global Megatrends. ISBN: 978–92–9213-534-8. http://dx.doi.org/10.2800/126936. Ehteshamul

  • Einarsson S, Gudmundsson J, Sverrisson H, Kristjansson JK, Runolfsson S (1993) Production of Rhizobium inoculants for Lupinus nootkatensis on nutrient-supplemented pumice. Appl Environ Microbiol 59(11):3666–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • EPA (1992) Regulatory impact analysis of worker protection standard for agricultural pesticides. Washington

    Google Scholar 

  • FAO (1986) Pests in agricultural environmental protection and productivity: conflicting goals. Series: Plant Production and Protection. FAO Regional Office for Latin America and the Caribbean, Chile

    Google Scholar 

  • FAO (1998) World reference base for soil resources. World Soil Resources Report 84, Food and Agriculture Organization of the United Nations, Rome: 88

    Google Scholar 

  • Fouilleux G, Revellin C, Hartmann A, Catroux G (1996) Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol 20:173–183

    Article  CAS  Google Scholar 

  • Gasic S, Tanovic B (2013) Biopesticide formulations, possibility of application and future trends. Pestic Fitomed 28(2):97–102

    Article  CAS  Google Scholar 

  • Gautam KC, Mishra JS (1995) Problems, prospects and new approaches in weed management. Pestic Inf 21(1):7–19

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gould F (1991) The evolutionary potential of crop pests. Am Sci 79(6):496–507

    Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage 2006 and 2007 market estimates. Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention U.S. Environmental Protection Agency, Washington, DC 20460

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2002) Future trends in biocontrol. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 443–449

    Google Scholar 

  • Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mung bean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Hassouna MG, El-Saedy MAM, Saleh HMA (1998) Biocontrol of soil-borne plant pathogens attacking cucumber Cucumis sativus by rhizobacteria in a semiarid environment. J Arid Soil Res Rehabil 12:345–357

    Article  CAS  Google Scholar 

  • Hedge SV, Brahmaprakash G (1992) A dry granular inoculant of Rhizobium for soil application. Plant Soil 144:309–311

    Article  Google Scholar 

  • Hooker AL (1972) Southern leaf blight of corn-present status and future prospects. J Environ Qual 1(3):244–249

    Article  Google Scholar 

  • Hultberg M, Alsberg T, Khalil S, Alsanius B (2009) Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. Biol Control 54:10526–10537

    Google Scholar 

  • Jackson AM, Whipps JM, Lynch JM (1991) Production, delivery systems, and survival in soil of four fungi with disease biocontrol potential. Enzym Microb Technol 13:636–642

    Article  Google Scholar 

  • Kaushal A, Rawat AK, Verma LN, Khare AK (1996) Oxalic acid industrial waste as a carrier for Rhizobium inoculants and its effect on soybean. J Indian Soc Soil Sci 44(2):249–252

    Google Scholar 

  • Kavitha K, Meenakumari KS, Sivaprasad P (2003) Effect of dual inoculation of native arbuscular mycorrhizal fungi and Azospirillum on suppression of damping off in chilli. Ind Phytopathol 56:112–113

    Google Scholar 

  • Khare E, Arora NK (2015) Effects of soil environment on field efficacy of microbial inoculants. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 37–75

    Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Knowles A (2001) Trends in pesticide formulations. PJB Publications Ltd, Agrow Reports UK, pp 89–92. D215

    Google Scholar 

  • Knowles A (2005) New developments in crop protection product formulation. T and F Informa UK Ltd, Agrow Reports UK, pp 153–156

    Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28(1):35–44

    Article  Google Scholar 

  • Kostov O, Lynch JM (1998) Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J Microbiol Biotechnol 14:389–397

    Article  Google Scholar 

  • Kotb SI, Angle JS (1986) Survival of blue-green algae in various carrier media. Trop Agric 63:113–116

    Google Scholar 

  • Kremer RJ, Peterson HL (1982) Effects of carrier and temperature on survival of Rhizobium spp. legume inocula: development of an improved type of inoculant. Appl Environ Microbiol 45:1790–1794

    Google Scholar 

  • Kumar V (2014) Characterization, bioformulation development and shelf life studies of locally isolated bio-fertilizer strains. Octa J Environ Res 2(1):32–37

    Google Scholar 

  • Kumari B, Madan VK, Kathpal TS (2006) Monitoring of pesticide residues in fruits. Environ Monit Assess 123(1):407–412

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P (2015) Robust cropping systems to tackle pests under climate change: a review. Agron Sustain Dev 35:443–459

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lyn ME, Burnett D, Garcia AR, Gray R (2010) Interaction of water with three granular biopesticide formulations. J Agric Food Chem 58(1):1804–1814

    Article  CAS  PubMed  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. ScientificWorldJournal:1–12

    Google Scholar 

  • Manjula K, Podile AR (2001) Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47:618–625

    Article  CAS  PubMed  Google Scholar 

  • Mari M, Bertolini P, Pratella GC (2003) Non-conventional methods for the control of post-harvest pear diseases. J Appl Microbiol 94:761–766

    Article  CAS  PubMed  Google Scholar 

  • Marjan J, Asghar H, Hamid RZ, Saeed R, Laleh N (2011) Development of Pseudomonas fluorescens and Bacillus coagulans based bioformulations using organic and inorganic carriers and evaluation of their influence on growth parameters of sugar beet. J Biopest 4(2):180–185

    Google Scholar 

  • McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonasgingivalis. J Bacteriol 185:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra RPN, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice Oryza sativa L. Curr Microbiol 52:383–389

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 37–75

    Google Scholar 

  • Ortiz-Hernandez ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. http://dx.doi.org/10.5772/56098

  • Oudejans JH (1991) Agro pesticide properties and functions in integrated crop protection. United Nations Economic and Social Commission for Asia and Pacific, Bangkok, p 329

    Google Scholar 

  • Paau AS (1988) Formulations useful in applying beneficial microorganisms to seeds. Trends Biotechnol 6:276–279

    Article  Google Scholar 

  • Paczkowski MW, Berryhill DL (1979) Survival of Rhizobium phaseoli in coal-based legume inoculants. Appl Environ Microbiol 38(4):612–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peschin R (2002) Economic benefits of pest management. In: Pimentel D (ed) Encyclopedia of pest management. Marcel Dekker, New York, pp 224–227

    Google Scholar 

  • Pesenti-Barili B, Ferdani E, Mosti M, Degli-Innocenti F (1991) Survival of agrobacterium radiobacter K84 on various carriers for crown gall control. Appl Environ Microbiol 57(7):2047–2051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel D (1997) Pest management in agriculture. In: Pimentel D (ed) Techniques for reducing pesticide use: environmental and economic benefits. Wiley, Chichester, pp 1–12

    Google Scholar 

  • Raaijmakers JM, Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol Plant-Microbe Interact 19:699–710

    Article  CAS  PubMed  Google Scholar 

  • Reban FB (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium Meliloti. Bioresour Technol 83:145–151

    Article  Google Scholar 

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2011) Campbell biology, ninth edn. Pearson Benjamin Cummings, San Francisco, pp 1170–1193

    Google Scholar 

  • Richter E, Ehwald R, Conitz C (1989) Immobilization of yeast cells in plant cell wall frameworks. Appl Microbiol Biotechnol 32:309–312

    Article  CAS  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306

    Article  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Google Scholar 

  • Schmale DG, Bergstrom GG (2003) Fusarium head blight in wheat. Plant Health Instr. http://dx.doi.org/10.1094/PHI-I-2003-0612-01

  • Sen A (1981) Poverty and famines: an essay on entitlement and deprivation. Oxford University Press, London, p 203

    Google Scholar 

  • Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to the sugar beet seeds using commercial coatings. Biocontrol Sci. Technol 7(1): 65–74

    Google Scholar 

  • Shaikh SS, Sayyed RZ (2015) Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 337–351

    Google Scholar 

  • Singh A, Sharma PB (1973) Growth and survival of rhizobia in commercial bacterial inoculants. J Res 10:95–98

    Google Scholar 

  • Singh BP, Shekhawat GS (1999) Potato late blight in India. Tech. Bull. No. 27 (Revised). CPRI, Shimla, p 27

    Google Scholar 

  • Singh DP, Singh A (2005) The value of disease and insect resistance. In: Disease and insect resistance. Plants Science Publishers, Enfield, pp 1–6

    Google Scholar 

  • Singh S, Gupta G, Khare E, Behal KK, Arora NK (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4(1):44–50

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam, ACIAR Proceedings 109e, pp 52–66

    Google Scholar 

  • Smilanick JL (1994) Strategies for the isolation and testing of biocontrol agents. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases-theory and practice. CRC Press, Boca Raton, pp 25–41

    Google Scholar 

  • Somasegaran P, Hoben JH (1994) Methods in Legume- Rhizobium Technology, Handbook of Rhizobia,1:16:450: ISBN:9781461383758, Springer Publ. New York.

    Google Scholar 

  • Sougoufara B, Diem HG, Dommergues YR (1989) Response of field-grown Casuarina equisetifolia to inoculation with Frankia strain ORS 021001 entrapped in alginate beads. Plant Soil 118:133–137

    Article  Google Scholar 

  • Sparrow SD, Ham GE (1983a) Nodulation, N2 fixation, and seed yield of navy beans as influenced by inoculant rate and inoculant carrier. Agron J 75:20–24

    Article  Google Scholar 

  • Sparrow SD, Ham GE (1983b) Survival of Rhizobium phaseoli in six carrier materials. Agron J 75:181–184

    Article  Google Scholar 

  • Stephens CS (1984) Ecological upset and recuperation of natural control of insect pests in some Costa Rican banana plantations. Turrialba 34:101–105

    Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97(2):244–249

    Article  PubMed  Google Scholar 

  • Tadros F (2005) Applied surfactants, principles and applications. Wiley-VCH Verlag GmbH and Co. KGaA, pp 187–256

    Google Scholar 

  • Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere habitat. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 1–50

    Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69(4):484–494

    Article  CAS  PubMed  Google Scholar 

  • Tronsmo A, Dennis C (1977) The use of Trichoderma species to control strawberry fruit rots. Netherland J Plant Patho 83:449–455

    Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control: a review (bacterial toxin application and effect of environmental factors). http://dx.doi.org/10.5772/55786

  • Vanvuurde JWL, Roozen NJM, Postma J, Mass PWT, Hageman PEJ, Kok CJ (2010) Processed manure as carrier to introduce Trichoderma harzianum: population dynamics and biocontrol effect on Rhizoctonia solani. Biocontrol Sci Tech 6(2):147–162

    Google Scholar 

  • Vidhyasekaran P, Sethuraman K, Rajappan K, Vasumathi K (1997) Powder formulation of Pseudomonas fluorescens to control pigeonpea wilt. Biol Control 8:166–171

    Article  Google Scholar 

  • Wilson CL, Pusey PL (1985) Potential for biocontrol of post-harvest plant diseases. Plant Dis 69:375–378

    Article  Google Scholar 

  • Woods TS (2003) Pesticide formulations. In: AGR 185 in encyclopedia of agrochemicals. Wiley, New York, pp 1–11. World Population Balance, 2015. http://www.worldpopulationbalance.org/3_times_sustainable

  • Youdeowei A (1989) Major arthropod pests of food and industrial crops of Africa and their economic importance. In: Yaninek JS, Harren HR (eds) Biological control: a sustainable solution to crop pest problems in Africa. IITA, Ibadan

    Google Scholar 

  • Zhang YH, Ye HZ (1993) A study of histology of resistance of wheat to head scab Fusarium graminearum. J Sichuan Agric Univ 11:444–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragati Sahai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sahai, P., Kumar, V. (2017). Carriers and Their Role in Plant Agrosystem. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_12

Download citation

Publish with us

Policies and ethics