Advertisement

The Good, the Bad, and the Ugly of Rhizosphere Microbiome

  • Muhammad Amjad Ali
  • Muhammad Naveed
  • Adnan Mustafa
  • Amjad Abbas
Chapter

Abstract

Rhizosphere is the portion of soil that is exposed to the root activity. It is hot spot for microbial activities which support the plant growth and development in different ways. Microbial communities in the rhizosphere referred as rhizosphere microbiome are one of the most diverse regions of the ecosystem existing on Earth. Rhizosphere microbiome is biologically the most diverse part of the ecosystem which contains a large number of microbial communities which interact with the plants differently like the good, the bad, and the ugly microbes of rhizosphere. The good ones are beneficial microbes of the rhizosphere which are involved in plant growth promotion through nutrient uptake in plants, antagonism to plant pathogens, and plant tolerance against abiotic stresses. However, the bad ones are plant parasitic fungi and nematodes which cause diseases of economic importance in important crop plants and result in serious issues of reduction in productivity and food security. Similarly, some rhizosphere microbes avail the opportunity to invade the human body through different courses and cause infectious diseases. These opportunistic microbes are “the ugly” ones as they are the most deleterious in nature. In this chapter, we have discussed in detail the good, the bad, and the ugly members of rhizosphere microbiome. Moreover, we have given a comprehensive account of bolts and nuts of rhizosphere and engineering of rhizosphere for agriculturally sustainability.

References

  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne Incognita. Nat Biotechnol 26(8):909–915PubMedCrossRefGoogle Scholar
  2. Afshar M, Raju M, Ansell D, Bleck TP (2011) Narrative review: tetanus–a health threat after natural disasters in developing countries. Ann Intern Med 154:329–335PubMedCrossRefGoogle Scholar
  3. Ahemad M, Khan Ms (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium stain MRC4. J Saudi Soc Agric Sci 11:63–71Google Scholar
  4. Ali SZ, Sandhya V, Grover M, Rao LV, Kishore VN, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55CrossRefGoogle Scholar
  5. Ali MA, Plattner S, Radakovic Z, Wieczorek K, Elashry A, Grundler FM, Ammelburg M, Siddique S, Bohlmann H (2013) An Arabidopsis ATPase gene involved in nematode-induced syncytium development and abiotic stress responses. Plant J 74:852–866PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ali MA, Wieczorek K, Kreil DP, Bohlmann H (2014) The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One 9:e102360PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ali MA, Abbas A, Azeem F, Javed N, Bohlmann H (2015) Plant-nematode interactions: from genomics to metabolomics. Int J Agric Biol 17:1071–1082CrossRefGoogle Scholar
  8. Alves BJR, Boddey RM, Urquiaga S (2004) The success of BNF in soybean in Brazil. Plant Soil 252:1–9CrossRefGoogle Scholar
  9. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.) Plant Soil 356:245–264CrossRefGoogle Scholar
  10. Andrews SC, Robinson AK, Rodríguez-Quinõnes F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237PubMedCrossRefGoogle Scholar
  11. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  12. Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620CrossRefGoogle Scholar
  13. Asano N, Oseki K, Tomioka E, Kizu H, Matsui K (1994) N containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res 259:243–255PubMedCrossRefGoogle Scholar
  14. Asano N, Kato A, Kizu H, Matsui K, Watson AA, Nash RJ (1996) Calystegine B4, a novel trehalase inhibitor from Scopolia Japonica. Carbohydr Res 293:195–204PubMedCrossRefGoogle Scholar
  15. Atkinson HJ, Urwin PE, Hansen E, Mcpherson MJ (1995) Designs for engineered resistance to root-parasitic nematodes. Trends Biotechnol 13(9):369–374CrossRefGoogle Scholar
  16. Avery LM, Hill P, Killham K, Jones DL (2004) Escherichia coli O157 survival following the surface and sub-surface application of human pathogen contaminated organic waste to soil. Soil Biol Biochem 36:2101–2103CrossRefGoogle Scholar
  17. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  18. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefGoogle Scholar
  19. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  20. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457CrossRefGoogle Scholar
  21. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13CrossRefGoogle Scholar
  22. Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  23. Bao Z, Sasaki K, Okubo T, Ikeda S, Anda M, Hanzawa E, Kakizaki K, Sato T, Mitsui H, Minamisawa K (2013) Impact of Azospirillum Sp. B510 Inoculation on Rice-Associated Bacterial Communities in a Paddy Field. Microbes Environ 28(4): 487–490.Google Scholar
  24. Baptista-Rosas RC, Hinojosa A, Riquelme M (2007) Ecological niche modeling of Coccidioides spp. in western north American deserts. Ann N Y Acad Sci 1111:35–46PubMedCrossRefGoogle Scholar
  25. Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  26. Baumgardner DJ, Temte JL, Gutowski E et al (2011) The differential diagnosis of pulmonary blastomycosis in Wisconsin: a Wisconsin network for Health Research (WiNHR) study. Wis Med J 110:68–73Google Scholar
  27. Bech TB, Johnsen K, Dalsgaard A, Laegdsmand M, Jacobsen OH, Jacobsen CS (2010) Transport and distribution of Salmonella enterica serovar Typhimurium in loamy and sandy soil monoliths with applied liquid manure. Appl Environ Microbiol 76:710–714PubMedCrossRefGoogle Scholar
  28. Bennet JW (2009) Aspergillus: a primer for the novice. Med Mycol 47:5–12CrossRefGoogle Scholar
  29. Bentley AR, Cromey MG, Farrokhi-Nejad R, Leslie JF, Summerell BA, Burgess LW (2006) Fusarium crown and root rot pathogens associated with wheat and grass stem bases on the South Island of New Zealand. Aust Plant Pathol 35(495):502Google Scholar
  30. Berendsen RL, Corné MJ, Pieterse AHM, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefGoogle Scholar
  31. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefGoogle Scholar
  32. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A et al (2009) Complete genome sequence of the sugarcane nitrogen fixing endophyte Gluconacetobacter diazotrophicus PAl5. BMC Genomics e450:10Google Scholar
  33. Bhattacharyya PN, Jha DK (2012) Plant-growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  34. Bisseling T, Dangl JL, Schulze-Lefert P (2009) Next-generation communication. Science 324:691PubMedCrossRefGoogle Scholar
  35. Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME (2007) Modeling the geographic distribution of bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecologic niche modeling. AmJTrop Med Hyg 77:1103–1110Google Scholar
  36. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  37. Brown ME (1974) Seed and root bacterization. Annu Rev Phytopatol 12:181–197CrossRefGoogle Scholar
  38. Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244CrossRefGoogle Scholar
  39. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  40. Cambardella LA, Eliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 46:777–783CrossRefGoogle Scholar
  41. Chan KG, Atkinson S, Mathee K et al (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chandler DS, Craven JA (1980) Relationship of soil moisture to survival of Escherichia coli and Salmonella typhimurium in soils. Crop Pasture Sci 31:547–555CrossRefGoogle Scholar
  43. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  44. Chapman SW (2005) Blastomyces dermatitidis. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 3026–3040Google Scholar
  45. Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34PubMedCrossRefGoogle Scholar
  46. Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564PubMedCrossRefGoogle Scholar
  47. Chen Y, Fan JB, Du L, Xu H, Zhang QY, He YQ (2014) The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl Soil Ecol 84:235–244CrossRefGoogle Scholar
  48. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefGoogle Scholar
  49. Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43PubMedCrossRefGoogle Scholar
  50. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753PubMedCrossRefGoogle Scholar
  51. Ciccillo F, Fiore A, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2002) Effects of two different application methods of Burkholderia ambifaria MCI7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4:238–245Google Scholar
  52. Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004) Inoculant formulation and fertilizer nitrogen effects on field pea: nodulation, N2 fixation and nitrogen partitioning. Can J Plant Sci 84:79–88CrossRefGoogle Scholar
  53. Colbert SF, Hendson M, Ferri M, Schroth MN (1993a) Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Appl Environ Microbiol 59:2071–2076PubMedPubMedCentralGoogle Scholar
  54. Colbert SF, Schroth MN, Weinhold AR, Hendson M (1993b) Enhancement of population densities of Pseudomonas putida ppg7 in agricultural ecosystems by selective feeding with the carbon source salicylate. Appl Environ Microbiol 59:2064–2070PubMedPubMedCentralGoogle Scholar
  55. Collins CH, Lyne PM, Granze JM (1992) Microbiological methods. Read Educational and Professional, Gauteng, p 117Google Scholar
  56. Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189Google Scholar
  57. Cooney NM, Klein BS (2008) Fungal adaptation to the mammalian host: it’s a new world, after all. Curr Opin Microbiol 11:511–516PubMedPubMedCentralCrossRefGoogle Scholar
  58. Cox K, Scherm H, Riley MB (2006) Characterization of Armillaria spp. from peach orchards in the southeastern United States using fatty acid methyl ester profiling. Mycol Res 110:4414–4422CrossRefGoogle Scholar
  59. Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5:43–50Google Scholar
  60. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499PubMedPubMedCentralCrossRefGoogle Scholar
  61. de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568PubMedCrossRefGoogle Scholar
  62. Decraemer W, Hunt DJ (2006) Structure and classification. Plant nematology. CABI, OxfordshireGoogle Scholar
  63. Defago G, Berling C, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner P, Withrich B (1990) Suppression of black root rot of tobacco and other diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, UK, pp 93–108Google Scholar
  64. De-la-Pena C, Badri DV, Lei Z, Watson BS, Brandao MM, Silva-Filho MC et al (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dessaux Y, Hinsinger P, Lemanceau P (2010) Rhizosphere: achievements and challenges. Springer, New YorkGoogle Scholar
  66. Devliegher W, Arif M, Verstraete W (1995) Survival and plant growth promotion of detergent-adapted Pseudomonas fluorescens ANP15 and Pseudomonas Aeruginosa 7NSK2. Appl Environ Microbiol 61:3865–3871PubMedPubMedCentralGoogle Scholar
  67. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394Google Scholar
  68. Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299PubMedCrossRefGoogle Scholar
  69. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmiumby Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol (5):687–1696Google Scholar
  70. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  71. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th international crop science congressGoogle Scholar
  72. Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. John Wiley & Sons, Inc, New York, pp 243–244Google Scholar
  73. Duffy BK, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538Google Scholar
  74. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedGoogle Scholar
  75. Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171Google Scholar
  76. Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, Monteiro RA, Baura VA, Pedrosa FO (2010) Influence of soil characteristics on the diversity of bacteria in the southern Brazil- ian Atlantic forest. Appl Environ Microbiol 76:4744–4749PubMedPubMedCentralCrossRefGoogle Scholar
  77. Feng K, HM L, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14:85–92Google Scholar
  78. Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol 72:103–108Google Scholar
  79. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedPubMedCentralCrossRefGoogle Scholar
  80. Fliessbach A, Winkler M, Lutz MP, Oberholzer HR, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623PubMedCrossRefGoogle Scholar
  81. Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘radicle’ biochem- istry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226PubMedCrossRefGoogle Scholar
  82. Flynn NM, Hoeprich PD, Kawachi MM, Lee KK, Lawrence RM, Goldstein E, Jordan GW, Kundargi RS, Wong GA (1979) An unusual outbreak of windborne coccidioidomycosis. N Engl J Med 301:358–361PubMedCrossRefGoogle Scholar
  83. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  84. Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manag 196:159–171CrossRefGoogle Scholar
  85. Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180(1):27–44PubMedCrossRefGoogle Scholar
  86. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  87. Gams W (2007) Biodiversity of soil-inhabiting fungi. Biodivers Conserv 16:69–72CrossRefGoogle Scholar
  88. Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain maize genotype associations as evaluated by 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  89. Gévaudant F, Duby G, von Stedingk E, Zhao RM, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+−ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776PubMedPubMedCentralCrossRefGoogle Scholar
  90. Giebel J (1982) Mechanism of resistance to plant nematodes. Annu Rev Phytopathol 20:257–279CrossRefGoogle Scholar
  91. Giordano W, Hirsch AM (2004) The expression of MaEXP1,a Melilotus alba expansin gene, is upregulated during the sweet clover-Sinorhizobium meliloti interaction. Mol Plant-Microbe Interact 17:613–622PubMedCrossRefGoogle Scholar
  92. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312PubMedCrossRefGoogle Scholar
  93. Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809PubMedPubMedCentralCrossRefGoogle Scholar
  94. Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234Google Scholar
  95. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  96. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  97. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  98. Goldstein AH, Rogers RD, Mead G (1993) Mining by microbe. Biotechnology 11:1250–1254Google Scholar
  99. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  100. Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  101. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37PubMedCrossRefGoogle Scholar
  102. Grassl GA, Finlay BB (2008) Pathogenesis of enteric Salmonella infections. Curr Opin Gastroenterol 24:22–26PubMedCrossRefGoogle Scholar
  103. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plantbacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  104. Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  105. Guiñazú LB, Andrés JA, Del Papa MF, Pistorio M, Rosas SB (2009) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190. doi: 10.1007/s00374-009-0408-5 CrossRefGoogle Scholar
  106. Guyer DM, Henderson IR, Nataro JP, Mobley HL (2000) Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38:53–66PubMedCrossRefGoogle Scholar
  107. Haagsma J (1991) Pathogenic anaerobic bacteria and the environment. Rev Sci Tech Off Int Epiz 10:749–764CrossRefGoogle Scholar
  108. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153PubMedCrossRefGoogle Scholar
  109. Hafeez FY, Yasmin S, Ariani D, Mehboob-ur-Rahman ZY, Malik KA (2006) Plant growthpromoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150Google Scholar
  110. Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42Google Scholar
  111. Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242PubMedCrossRefGoogle Scholar
  112. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  113. Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59CrossRefGoogle Scholar
  114. Hirulkar NB, Soni B (2011) Incidence of antibiotic-resistant Pseudomonas Aeruginosa isolated from drinking water. Int J Pharm Biol Arch 2:724–733Google Scholar
  115. Högberg MN, Högberg P, Myrold DD (2006) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three. Oecologia 150:590–601PubMedCrossRefGoogle Scholar
  116. Holford ICR (1997) Soil phosphorus,its measurements and its uptake by plants. Austr J Soil Res 35:227–239CrossRefGoogle Scholar
  117. Howell CR, Stipanovic RD (1979a) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482CrossRefGoogle Scholar
  118. Howell CR, Stipanovic RD (1979b) Suppression of pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715CrossRefGoogle Scholar
  119. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. Lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425.Google Scholar
  120. Hussey RS, Grundler FM (1998) Nematode parasitism of plants. The physiology and biochemistry of free-living and plant-parasitic nematodes, vol 1. CAB International.Google Scholar
  121. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109PubMedCrossRefGoogle Scholar
  122. Ikeda AG, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Maria Steffens BR, Hungria M, Galli Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160PubMedCrossRefGoogle Scholar
  123. Islam M, Morgan J, Doyle MP, Phatak SC, Millner P, Jiang X (2004) Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog Dis 1:27–35PubMedCrossRefGoogle Scholar
  124. Jabbar A, Javed N, Khan SA, Ali MA (2015) Meloidogyne graminicola an emerging threat to rice and wheat in Punjab province in Pakistan. Pak J Nematol 33:227–228Google Scholar
  125. Jeffries P, Gianinazzi S, Perotto S, Turnau K (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  126. Johnson SN, Nielsen UN (2012) Foraging in the dark –chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614PubMedCrossRefGoogle Scholar
  127. Jones MGK, Payne HL (1978) Early stage of nematode-induced giant-cell formation in roots of Impatiens balsamina. J Nematol 10(1):70–84PubMedPubMedCentralGoogle Scholar
  128. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33CrossRefGoogle Scholar
  129. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. doi: 10.1111/mpp.12057
  130. Khan MS, Zaidi A, Wani PA (2009) Role of phosphate solubilizing microorganisms insustainable agriculture - a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  131. Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS (2008) Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J Agric Sci 21:309–311Google Scholar
  132. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  133. Klotchko A, Wallace MR (2011) Salmonellosis clinical presentation. http://emedicine.medscape.com/article/228174-clinical#a0218
  134. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152PubMedCrossRefGoogle Scholar
  135. Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520PubMedCrossRefGoogle Scholar
  136. Koyama H, Takita E, Kawamura A, Hara T, Shibata D (1999) Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in al-phosphate medium. Plant Cell Physiol 40:482–488PubMedCrossRefGoogle Scholar
  137. Krewulak HD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  138. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  139. Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369PubMedCrossRefGoogle Scholar
  140. Lal R (2000) Soil management in the developing countries. Soil Sci 165:57–72CrossRefGoogle Scholar
  141. Lambers H (1980) The physiological significance of cyanide-resistant respiration in higher plants. Plant Cell Environ 3:293–302CrossRefGoogle Scholar
  142. Lambers H (2003) Dryland salinity: a key environmental issue in southern Australia. Plant Soil 218:5–7Google Scholar
  143. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  144. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415CrossRefGoogle Scholar
  145. Lehtonen MJ, Somervuo P, Valkonen JPT (2008) Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology 98:1190–1198PubMedCrossRefGoogle Scholar
  146. Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535CrossRefGoogle Scholar
  147. Loaces I, Ferrando L, Scavino AF (2010) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecol 61:606–618CrossRefGoogle Scholar
  148. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Molec Plant Microbe Int 4:5–13CrossRefGoogle Scholar
  149. Low C, Rotstein C (2011) Emerging fungal infections in immunocompromised patients. F1000 Med Rep 3:14PubMedPubMedCentralCrossRefGoogle Scholar
  150. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  151. Luscher A, Daepp M, Blum H, Hartwig UA, Nosberger J (2004) Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur J Agron 21(3):379–398CrossRefGoogle Scholar
  152. Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester, p 458Google Scholar
  153. Ma JF, Nomoto K (1994) Biosynthetic pathway of 3epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants. Soil Sci Plant Nutr 40:311–317CrossRefGoogle Scholar
  154. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278PubMedCrossRefGoogle Scholar
  155. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278Google Scholar
  156. Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MM (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103:538–544PubMedCrossRefGoogle Scholar
  157. Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophores release and of iron uptake along intact barley roots. Physiol Plant 71:157–162CrossRefGoogle Scholar
  158. Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439CrossRefGoogle Scholar
  159. Matches JR, Liston J, Curran D (1974) Clostridium perfringens In the environment. Appl Microbiol 28:655–660PubMedPubMedCentralGoogle Scholar
  160. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  161. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  162. Mc Lellan CA, Turbyville TJ, Wijeratne EMK, Kerschen EV, Queitsch C, Whitesell L, Gunatilaka AAL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP 90 inhibitor. Plant Physiol 145:174–182CrossRefGoogle Scholar
  163. McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils-implications for fertilizer management and design: an Australian perspective. Plant Soil 349:69–87CrossRefGoogle Scholar
  164. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335PubMedCrossRefGoogle Scholar
  165. Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, Leveau JHJ (2011) Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J 5:1494–1504PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefGoogle Scholar
  167. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663Google Scholar
  168. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  169. Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332PubMedCrossRefGoogle Scholar
  170. Muhammad A. Ali, Farrukh Azeem, Amjad Abbas, Faiz A. Joyia, Hongjie Li, Abdelfattah A. Dababat, (2017) Transgenic Strategies for Enhancement of Nematode Resistance in Plants. Frontiers in Plant Science 8Google Scholar
  171. Muthukumarasamy R, Cleenwerk I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T et al (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286PubMedCrossRefGoogle Scholar
  172. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55(11):1302–1309Google Scholar
  173. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572PubMedCrossRefGoogle Scholar
  174. Naveed M, Mitter B, Reichenauer TG, Krzysztof W, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97(1):30–39CrossRefGoogle Scholar
  175. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  176. Neumann G, Römheld V (2007) The release of root exudates as affected by the root physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC, Boca Raton, pp 23–72CrossRefGoogle Scholar
  177. Newton WE (2000) Nitrogen fixation in perspective. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, pp 3–8Google Scholar
  178. Oger P, Mansouri H, Nesme X, Dessaux Y (2004) Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47:96–10PubMedCrossRefGoogle Scholar
  179. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2 fixing bacteria on micro propagated sugarcane plants. Plant Soil 2:205–215CrossRefGoogle Scholar
  180. Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43Google Scholar
  181. Padgham JL, Duxbury JM, Mazid AM, Abawi GS, Hossain M (2004) Yield loss caused by Meloidogyne Graminicola on lowland rainfed rice in Bangladesh. J Nematol 36(1):42–48PubMedPubMedCentralGoogle Scholar
  182. Pelayo Ulacia S, Dafhnis D (1980) Isolation of the causative agent and histopathology of athlete’s foot (preliminary report). Rev Cubana Med Trop 32:227–232PubMedGoogle Scholar
  183. Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470CrossRefGoogle Scholar
  184. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefGoogle Scholar
  185. Pieterse CMJ (2012) Prime time for transgenerational defense. Plant Physiol 158:545PubMedPubMedCentralCrossRefGoogle Scholar
  186. Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242CrossRefGoogle Scholar
  187. Qin L, Jiang H, Tian J, Zhao J, Liao H (2011) Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant Soil 349:25–36CrossRefGoogle Scholar
  188. Raaijmakers J, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and pathogenic soil bacteria. Annu Rev Phytopathol 50:403–424PubMedCrossRefGoogle Scholar
  189. Rasmann S, Ali JG, Helder J, van der Putten WH (2012) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol 38:615–628PubMedCrossRefGoogle Scholar
  190. Revis DRJ (2008) Closridial gas gangrene clinical presentation. http://emedicine.medscape.com/article/214992-clinical Google Scholar
  191. Rice SA, Givskov M, Steinberg P, Kjelleberg S (1999) Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1:23–31PubMedGoogle Scholar
  192. Richardson A (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–907Google Scholar
  193. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996PubMedPubMedCentralCrossRefGoogle Scholar
  194. Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  195. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  196. Robson ND, Cox AR, McGowan SJ, Bycroft BW, Salmond GPC (1997) Bacterial N-acyl-homoserine lactone-dependent signalling and its potential biotechnological applications. Trends Biotechnol 15:458–464PubMedCrossRefGoogle Scholar
  197. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  198. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  199. Roque MR, Roque BL, Foster CS (2010) Actinomycosis in ophthalmology. http://emedicine.medscape.com/article/1203061-overview
  200. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351PubMedCrossRefGoogle Scholar
  201. Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57CrossRefGoogle Scholar
  202. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560PubMedCrossRefGoogle Scholar
  203. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  204. Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020PubMedPubMedCentralCrossRefGoogle Scholar
  205. Saremi H, Mohammadi J, Okhovvat SM (2007) Naz, a resistant cultivar on bean root rot disease in Zanjan province, northwest Iran. Commun Agric Appl Biol Sci 72:757–764PubMedGoogle Scholar
  206. Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the Society. Vistas on Nematology Hyatssville: Society of NematologistsGoogle Scholar
  207. Savka MA, Dessaux Y, Oger P, Rossbach S (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant-Microbe Interact 15(9):866–874PubMedCrossRefGoogle Scholar
  208. Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181PubMedPubMedCentralCrossRefGoogle Scholar
  209. Schneider E, Hajj RA, Spiegel RA et al (1997) A coccidioidomycosis outbreak following the Northridge, Calif, earthquake. JAMA 277:904–908PubMedCrossRefGoogle Scholar
  210. Selvakumar G, Panneerselvam P, Ganeshamurthy AN, Maheshwari DK (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, New York, pp 205–224CrossRefGoogle Scholar
  211. Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J Microbiol Biotechnol 17:1300–1307Google Scholar
  212. Sharma A, Johria BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894CrossRefGoogle Scholar
  213. Sharma SK, Ramesh A, Johri BN (2013) Isolation and characterization of plant growth promoting bacillus amyloliquefaciens strain sks_bnj_1 and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). J Virol Microbiol 2013:1–19Google Scholar
  214. Sharpton TJ, Stajich JE, Rounsley SD et al (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731PubMedPubMedCentralCrossRefGoogle Scholar
  215. Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils 29:62–68Google Scholar
  216. Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014:426483PubMedPubMedCentralGoogle Scholar
  217. Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48:546–554CrossRefGoogle Scholar
  218. Soriano IR, Prot JC, Matias DM (2000) Expression of tolerance for Meloidogyne Graminicola in rice cultivars as affected by soil type and flooding. J Nematol 32(3):309–317PubMedPubMedCentralGoogle Scholar
  219. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603CrossRefGoogle Scholar
  220. Srivastava S, Yadav A, Seema K, Mishra S, Choudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor Rpo S. Curr Microbiol 56:453–457PubMedCrossRefGoogle Scholar
  221. Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277CrossRefGoogle Scholar
  222. Steiner C, Teixeira WG, Lehmann J, Zech W (2004) Microbial response to charcoal amendments of highly weathered soils and Amazonian dark earths in Central Amazonia-preliminary results. In: Amazonian dark earths: explorations in space and time. Springer, Berlin, pp 195–212Google Scholar
  223. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J Appl Soil Ecol 15:183–190CrossRefGoogle Scholar
  224. Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234CrossRefGoogle Scholar
  225. Sulieman S (2011) Does GABA increase the efficiency of symbiotic N2 fixation in legumes? Plant Signal Behav 6:32–36PubMedPubMedCentralCrossRefGoogle Scholar
  226. Summerell B A, Leslie JF, Backhouse D, Bryden WL, Burgess LW (2001) Fusarium: paul E. Nelson memorial symposium. APS Press. The American Phytopathology Society, St. Paul, p 392Google Scholar
  227. Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plant. J Plant Nutr 7:469–477CrossRefGoogle Scholar
  228. Tang CS, Cai WF, Kohl K, Nishimoto RK (1995) Plant stress and allelopathy. In: Inderjit KMMD, Einhellig FA (eds) Allelopathy: organisms, processes, and applications, vol 582. Acs Symposium Series Amer Chemical Soc, Washington, pp 142–157CrossRefGoogle Scholar
  229. Tepfer D, Goldmann A, Pamboukdjian N, Maille M, Lepingle A, Chevalier D, Dénarié J, Rosenberg C (1988) A plasmid of rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegia sepium. J Bacteriol 170:1153–1161PubMedPubMedCentralCrossRefGoogle Scholar
  230. Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expresses nifH genes of endophytic bacteria detected in field-growth sweet potatoes (Ipomoea Batata L.) Microb Environ 23:89–93CrossRefGoogle Scholar
  231. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449CrossRefGoogle Scholar
  232. Torres AR, Kaschuk G, Saridakis GP, Hungria M (2012) Genetic variability in Bradyrhizobium japonicum strains nodulating soybean Glycine max (L.) Merrill. World J Microbiol Biotechnol 28:1831–1835PubMedCrossRefGoogle Scholar
  233. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296:1064–1066PubMedCrossRefGoogle Scholar
  234. Turlings TCJ, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:47–56CrossRefGoogle Scholar
  235. Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216PubMedCrossRefGoogle Scholar
  236. Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomashow L, Mavrodi D (2005) Antagonistic activity among 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. FEMS Microbiol Lett 242:249–256PubMedCrossRefGoogle Scholar
  237. Van Ness GB (1971) The ecology of anthrax. Science 172:1303–1307PubMedCrossRefGoogle Scholar
  238. Van Peer R, Schippers B (1989) Plant growth res ponses to bacterization and rhizosphere microbial development in hydroponic culture. Can J Microbiol 35:456–463CrossRefGoogle Scholar
  239. Vance C, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  240. Verbeek RE, Banaay CG, Sikder M, De Waele D, Vera Cruz CM, Gheysen G, Höfte M, Kyndt T (2016) Interactions between the oomycete Pythium arrhenomanes and the rice root-knot nematode Meloidogyne Graminicola in aerobic Asian rice varieties. Rice 9:36PubMedPubMedCentralCrossRefGoogle Scholar
  241. Voisard C, Keel C, Haas D, De ´f G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedPubMedCentralGoogle Scholar
  242. Voss KA, Bacon CW, Meredith FI, Norred WP (1996) Comparative subchronic toxicity studies of nixtamalized and water-extracted Fusarium moniliforme culture material. Food Chem Toxicol 34:623–632PubMedCrossRefGoogle Scholar
  243. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moenne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  244. Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20CrossRefGoogle Scholar
  245. Waters V, Gómez M, Soong G, Amin S, Ernst R, Prince A (2007) Immunostimulatory properties of the emerging pathogen Stenotrophomonas maltophilia. Infect Immun 75(4):1698–1703PubMedPubMedCentralCrossRefGoogle Scholar
  246. Webster JM (1995) The host-parasite relationships of plant-parasitic nematodes. Advances in parasitology, vol 36. Academic Press Inc.Google Scholar
  247. Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224.Google Scholar
  248. Weinstein KB (2011) Listeria monocytogenes treatment & management. http://emedicine.medscape.com/article/220684-treatment
  249. Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  250. Werner SB, Pappagianis D, Heindl I, Mickel A (1972) An epidemic of coccidioidomycosis among archeology. N Engl J Med 286:507–512PubMedCrossRefGoogle Scholar
  251. Wharton PS, Tumbalam P, Kirk WW (2006) First report of potato tuber sprout rot caused by Fusarium sambucinum in Michigan. Plant Dis 90:1460–1464CrossRefGoogle Scholar
  252. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404PubMedCrossRefGoogle Scholar
  253. Williams PL, Sable DL, Mendez P, Smyth LT (1979) Symptomatic coccidioidomycosis following a sever natural dust storm. Chest 76:566–570PubMedCrossRefGoogle Scholar
  254. Xu RQ, Wang JN, Chen JY, Dai XF (2010) Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae. Sci Agric Sin 43:489–496Google Scholar
  255. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type IH+−pyrophosphatase. Plant Biotechnol J 5:735–745PubMedCrossRefGoogle Scholar
  256. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  257. Young JC, DeWitt ND, Sussman MR (1998) A transgene encoding a plasma membrane H+−ATPase that confers acid resistance in Arabidopsis thaliana seedlings. Genetics 149:501–507PubMedPubMedCentralGoogle Scholar
  258. Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145CrossRefGoogle Scholar
  259. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963Google Scholar
  260. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy. Ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153PubMedCrossRefGoogle Scholar
  261. Zhao RM, Dielen V, Kinet JM, Boutry M (2000) Cosuppression of a plasma membrane H+−ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–546PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Muhammad Amjad Ali
    • 1
    • 2
  • Muhammad Naveed
    • 3
  • Adnan Mustafa
    • 3
  • Amjad Abbas
    • 1
  1. 1.Department of Plant PathologyUniversity of AgricultureFaisalabadPakistan
  2. 2.Centre of Agricultural Biochemistry & BiotechnologyUniversity of AgricultureFaisalabadPakistan
  3. 3.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan

Personalised recommendations