Skip to main content

Inquiry-Discovery Teaching Approach as a Means to Remediate Primary Students’ Misconceptions About the Phases of the Moon

  • Chapter
  • First Online:
Book cover Overcoming Students' Misconceptions in Science

Abstract

In this study, the effectiveness of an inquiry-discovery teaching approach in remediating misconceptions about the phases of the moon was investigated. For this purpose, quantitative data analysis was employed. A test consisting of eight open-ended and 18 multiple-choice questions was administered as pre-test and post-test to 75 Year 6 primary school students from two intact classes in a school. The classes were randomly assigned into an experimental group (N = 38) instructed using an inquiry-discovery teaching approach and a comparison group (N = 37) instructed using a more traditional approach. An independent-samples t test was used to determine the treatment effect on students’ conceptual understanding about the phases of the moon. The analysis of the post-test mean scores of both groups showed a statistically significant difference favouring the experimental group (M exp = 16.62; SDexp = 1.07; M com = 11.18; SDcom = 2.34; t = 11.07, p < 0.05). A post-test analysis also indicated that students in the experimental group held fewer misconceptions about the phases of the moon than the comparison group students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.

    Article  Google Scholar 

  • Allen, D. E., Duch, B. J., & Groh, S. E. (1996). The power of problem-based learning in teaching introductory science courses. New Directions for Teaching and Learning, 68, 43–52.

    Article  Google Scholar 

  • Applebee, A. N., Langer, J. A., Nystrand, M., & Gamoran, A. (2003). Discussion-based approaches to developing understanding: Classroom instruction and student performance in middle and high school English. American Educational Research Journal, 40(3), 685–730.

    Article  Google Scholar 

  • Barak, M., & Dori, Y. J. (2005). Enhancing undergraduate students’ chemistry understanding through project based learning in an IT environment. Science Education, 89(1), 117–139.

    Article  Google Scholar 

  • Barker, M., & Carr, M. (1989). Teaching and learning about photosynthesis. Part 2: A generative learning strategy. International Journal of Science Education, 11(2), 141–152.

    Article  Google Scholar 

  • Barnett, M., & Morran, J. (2002). Addressing children’s alternative frameworks of the moon’s phases and eclipses. International Journal of Science Education, 24(8), 859–879.

    Article  Google Scholar 

  • Baxter, J. (1989). Children’s understanding of familiar astronomical events. International Journal of Science Education, 11(5), 502–513.

    Article  Google Scholar 

  • Bulunuz, N., & Jarrett, O. S. (2010). The effects of hands-on learning stations on building American elementary teachers’ understanding about Earth and space science concepts. EURASIA Journal of Mathematics, Science & Technology Education, 6(2), 85–99.

    Google Scholar 

  • Chandrasegaran, A., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.

    Article  Google Scholar 

  • Cohen, J. (2003). Student ideas about the moon and its phases and the impact of a real 3D model of the Sun/Earth/Moon system in an introductory astronomy laboratory course (Doctoral dissertation, University of Maine). Retrieved from http://www.umaine.edu/center/files/2009/12/Cohen_Defense.pdf

  • Colburn, A. (2000). Constructivism: Science education’s “grand unifying theory”. The Clearing House, 74(1), 9–12.

    Article  Google Scholar 

  • Collins, A., & Stevens, A. L. (1982). Goals and strategies of inquiry teachers. Advances in Instructional Psychology, 2, 65–119.

    Google Scholar 

  • Creswell, J. (2002). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Driver, R. (1989). Changing conceptions. In P. Adey (Ed.), Adolescent development and school practice (pp. 79–103). London, UK: Falmer Press.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (pp. 46–49). Chicago, IL: The National Society for the Study of Education.

    Google Scholar 

  • Gijbels, D., Dochy, F., Van den Bossche, P., & Segers, M. (2005). Effects of problem-based learning: A meta-analysis from the angle of assessment. Review of Educational Research, 75(1), 27–61.

    Article  Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633.

    Article  Google Scholar 

  • Hamza, K. M., & Wickman, P. O. (2008). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92(1), 141–164.

    Article  Google Scholar 

  • Harlen, W. (1992). Teaching and learning primary science. Amsterdam Avenue, NY: Teachers College Press.

    Google Scholar 

  • Haury, D. L. (1993). Teaching science through inquiry. Retrieved from http://www.ericdigests.org/1993/inquiry.htm

  • Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731–743.

    Article  Google Scholar 

  • Huddle, P. A., White, M. D., & Rogers, F. (2000). Using teaching model to correct known misconceptions in electrochemistry. Journal of Chemical Education, 77, 104–110.

    Article  Google Scholar 

  • Kahle, J. B., Meece, J., & Scantlebury, K. (2000). Urban African-American middle school science students: Does standards-based teaching make a difference? Journal of Research in Science Teaching, 37(9), 1019–1041.

    Article  Google Scholar 

  • Kassim, A. H. (2003). Kurikulum sains sekolah Malaysia [Malaysian schools’ science curriculum]. Johor, Malaysia: Fakulti Pendidikan Universiti Teknologi Malaysia.

    Google Scholar 

  • Lin, H., & dan Cheng, H. (2000). The assessment of students’ and teachers’ understanding of gas laws. Journal of Chemical Education, 77, 235–238.

    Article  Google Scholar 

  • LoPresto, M. C., & Murrell, S. R. (2011). An astronomical misconceptions survey. Journal of College Science Teaching, 40(5), 14–22.

    Google Scholar 

  • Mohd Majid, K. (1998). Kaedah penyelidikan pendidikan (4 ed.) [Educational research method (4th ed.)]. Kuala Lumpur, Malaysia: Dewan Bahasa Dan Pustaka.

    Google Scholar 

  • National Science Teachers Association. (2004). Retrieved from http://www.nsta.org/docs/PositionStatement_ScientificInquiry.pdf

  • Nicoll, G. (2001). A report of undergraduates’ bonding misconceptions. International Journal of Science Education, 23, 707–730.

    Article  Google Scholar 

  • Nik Kar, Z., & Saleh, S. (2012). Kesan pendekatan inkuiri penemuan terhadap pencapaian pelajar dalam mata pelajaran kimia [The effect of inquiry discovery approach towards student achievement in the subject of chemistry]. Jurnal Pendidik dan Pendidikan, 27,159–174.

    Google Scholar 

  • Nik Pa, N.A. (1999). Pendekatan konstruktivisme radikal dalam pendidikan Matematik [Radical constructivist approach in education]. Kuala Lumpur, Malaysia: Penerbit Universiti Malaya.

    Google Scholar 

  • Ogan-Bekiroglu, F. (2007). Effects of model-based teaching on pre-service physics teachers’ conceptions of the moon, moon phases, and other lunar phenomena. International Journal of Science Education, 29(5), 555–593.

    Article  Google Scholar 

  • Onyancha, R., Armour, K., & Endrizzi, M. (2006). Teaching inquiry and the impact of performance based assessments. In Proceedings of the ASEE New England Section 2006 Annual Conference. New England.

    Google Scholar 

  • Pallant, J. (2001). SPSS survival guide. Sydney, Australia: Allen & Unwin.

    Google Scholar 

  • Pelter, M. W., & Walker, N. M. (2012). A discovery-based hydrochlorination of carvone utilizing a guided-inquiry approach to determine the product structure from 13C NMR Spectra. Journal of Chemical Education, 89(9), 1183–1185.

    Article  Google Scholar 

  • Piaget, J. (1964). Development and learning. In T. Ripple & V. Rockcastle (Eds.), Piaget rediscovered (pp. 7–20). New York, NY: Cornell University Press.

    Google Scholar 

  • Pine, K., Messer, D., & John, K. (2001). Children’s misconceptions in primary science: A survey of teachers’ views. Research in Science & Technological Education, 19(1), 79–96.

    Article  Google Scholar 

  • Rosinah, E. (2005). Pelaksanaan pendekatan inkuiri-penemuan dalam pendidikan sains [Implementation of inquiry-discovery approach in science education] (Unpublished Ph.D. dissertation). Universiti Kebangsaan Malaysia, Bangi.

    Google Scholar 

  • Sarrazine, A. R. (2005). Addressing astronomy misconceptions and achieving national science standards utilizing aspects of multiple intelligences theory in the classroom and the planetarium. Retrieved from http://search.proquest.com/docview/304987603?accountid=14645

  • Schoon, K. J. (1989). Misconceptions in the earth and space sciences: A cross-age study. Ph.D. dissertation, Loyola University of Chicago, United States Illinois. Retrieved from http://files.eric.ed.gov/fulltext/ED306076.pdf

  • Sekaran, U. (2006). Research methods for business: A skill building approach. New York, NY: Wiley.

    Google Scholar 

  • Stahly, L. L., Krockover, G. H., & Shepardson, D. P. (1999). Third grade students’ ideas about the lunar phases. Journal of Research in Science Teaching, 36(2), 159–177.

    Article  Google Scholar 

  • Subramaniam, K., & Padalkar, S. (2009). Visualisation and reasoning in explaining the phases of the moon. International Journal of Science Education, 31(3), 395–417.

    Article  Google Scholar 

  • Surif, J., & Mohammad Yusof, A. (2003). Aplikasi model generatif-metakognitif dalam perisian komputer untuk mengubah pengkonsepan pelajar dalam proses pengajaran dan pembelajaran sains [Application of generative-metacognitive model in the computer software to change students conceptual in learning science]. Paper presented in 6th Conventions of Educational Technology: ICT in Practice and Education: Trend and Issues. City Bayview Hotel, Melaka.

    Google Scholar 

  • Tan, P. L. (2005). Approaches to learning and learning values: An investigation of adult learners in Malaysia. Doctoral Degree thesis, Queensland University of Technology. Retrieved from http://eprints.qut.edu.au/16295/1/Po_Li_Tan_Thesis.pdf

  • Tan, J. M., & Khor, K. H. (2012). Penggunaan kaedah inkuiri-penemuan KAKAK untuk meningkatkan prestasi murid-murid Tahun 4 dalam topik fantastic materials [Use of inquiry-discovery approach (KAKAK) to improve Year 4 students’ performance in the topic of fantastic materials]. Retrieved from http://ipgktb.edu.my/lestari/kertas_lestari2012/Dr.%20Khor.pdf

  • Trundle, K. C., Atwood, R. K., Christopher, J. E., & Sackes, M. (2010). The effect of guided inquiry-based instruction on middle school students’ understanding of lunar concepts. Research in Science Education, 40(3), 451–478.

    Article  Google Scholar 

  • Venville, G. J., Louisell, R. D., & Wilhelm, J. A. (2012). Young children’s knowledge about the moon: A complex dynamic system. Research in Science Education, 42(4), 729–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roslina Mohd Radzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mohd Radzi, R., Abdullah, M.N.S., Muruthi, K. (2017). Inquiry-Discovery Teaching Approach as a Means to Remediate Primary Students’ Misconceptions About the Phases of the Moon. In: Karpudewan, M., Md Zain, A., Chandrasegaran, A. (eds) Overcoming Students' Misconceptions in Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3437-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3435-0

  • Online ISBN: 978-981-10-3437-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics