Skip to main content

Practical and Environmentally Friendly Transformation of Tetrahydrofuran-2-Methanols to γ-Lactones via Oxidative Cleavage

  • Chapter
  • First Online:
New Horizons of Process Chemistry

Abstract

Transformation of oxacycle-2-methanols to the corresponding lactones is often applied to total synthesis of natural products. It is accomplished by either direct oxidative cleavage reaction using a heavy metal oxidant or multistep conversion. As a practical and environmentally friendly procedure, a direct oxidative cleavage reaction of tetrahydrofuran-2-methanols to the corresponding γ-lactones was developed. This new catalytic reaction proceeds with a catalytic amount of 2-iodobenzamide and stoichiometric Oxone (2KHSO5·KHSO4·K2SO4) at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. M. Ali, K. Ramesh, R. T. Borchardt, Tetrahedron Lett. 1990, 31, 1509–1512.

    Google Scholar 

  2. F. Klepper, E.-M. Jahn, V. Hickmann, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 2325–2327.

    Google Scholar 

  3. S. A. Shaw, B. Balasubramanian, S. Bonacorsi, J. C. Cortes, K. Cao, B.-C. Chen, J. Dai, C. Decicco, A. Goswami, Z. Guo, R. Hanson, W. G. Humphreys, P. Y. S. Lam, W. Li, A. Mathur, B. D. Maxwell, Q. Michaudel, L. Peng, A. Pudzianowski, F. Qiu, S. Su, D. Sun, A. A. Tymiak, B. P. Vokits, B. Wang, R. Wexler, D.-R. Wu, Y. Zhang, R. Zhao, P. S. Baran, J. Org. Chem. 2015, 80, 7019–7032.

    Google Scholar 

  4. L. G. Dickson, E. Leroy, J.-L. Reymond, Org. Biomol. Chem. 2004, 2, 1217–1226.

    Google Scholar 

  5. S. Baskaran, S. Chandrasekaran, Tetrahedron Lett. 1990, 31, 2775–2778.

    Google Scholar 

  6. P. Singh, A. Mittal, S. Kaur, S. Kumar, Bioorg. Med. Chem. 2006, 14, 7910–7916.

    Google Scholar 

  7. D. Papaioannou, G. W. Francis, D. W. Aksnes, T. Brekke, K. Maartmann-Moe, Acta Chem. Scand. 1990, 44, 90–95.

    Google Scholar 

  8. J. N. Kim, E. K Ryu, Tetrahedron Lett. 1992, 33, 3141–3144.

    Google Scholar 

  9. D. F. Taber, Y. Song, J. Org. Chem. 1996, 61, 7508–7512.

    Google Scholar 

  10. D. F. Taber, Y. Song, J. Org. Chem. 1997, 62, 6603–6607.

    Google Scholar 

  11. T. Yakura, A. Ozono, K. Matsui, M. Yamashita, T. Fujiwara, Synlett 2013, 24, 65–68.

    Google Scholar 

  12. K. Tomooka, M. Kikuchi, K. Igawa, M. Suzuki, P.-H. Keong, T. Nakai, Angew. Chem. Int. Ed. 2000, 39, 4502–4505.

    Google Scholar 

  13. F. Urabe, S. Nagashima, K. Takahashi, J. Ishihara, S. Hatakeyama, J. Org. Chem. 2013, 78, 3847–3857.

    Google Scholar 

  14. D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155–4156.

    Google Scholar 

  15. R. P. Robinson, V. Mascitti, C. M. Boustany-Kari, C. L. Carr, P. M. Foley, E. Kimoto, M. T. Leininger, A. Lowe, M. K. Klenotic, J. I. MacDonald, R. J. Maguire, V. M. Masterson, T. S. Maurer, Z. Miao, J. D. Patel, C. Préville, M. R. Reese, L. She, C. M. Steppan, B. A. Thuma, T. Zhu, Bioorg. Med. Chem. Lett. 2010, 20, 1569–1572.

    Google Scholar 

  16. V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Ltd, 2013.

    Google Scholar 

  17. Iodine Chemistry and Applications (ed.: T. Kaiho), John Wiley & Sons, Ltd, 2014.

    Google Scholar 

  18. A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328–3435.

    Google Scholar 

  19. T. Dohi, Y. Kita, Chem. Commun. 2009, 2073–2085.

    Google Scholar 

  20. M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086–2099.

    Google Scholar 

  21. T. Dohi, Chem. Pharm. Bull. 2010, 58, 135–142.

    Google Scholar 

  22. F. V. Singh, T. Wirth, Chem. Asian J. 2014, 9, 950–971.

    Google Scholar 

  23. F. Berthiol, Synthesis 2015, 47, 587–603.

    Google Scholar 

  24. A. P. Thottumkara, M. S. Bowsher, T. K. Vinod, Org. Lett. 2005, 7, 2933–2936.

    Google Scholar 

  25. A. Schulze, A. Giannis, Synthesis 2006, 257–260.

    Google Scholar 

  26. M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2009, 131, 251–262.

    Google Scholar 

  27. M. Uyanik, R. Fukatsu, K. Ishihara, Org. Lett. 2009, 11, 3470–3473.

    Google Scholar 

  28. M. Uyanik, K. Ishihara, Aldrichimica Acta 2010, 43, 83–91.

    Google Scholar 

  29. M. Uyanik, T. Mutsuga, K. Ishihara, Molecules 2012, 17, 8604–8616.

    Google Scholar 

  30. T. Miura, K. Nakashima, N. Tada, A. Itoh, Chem. Commun. 2011, 47, 1875–1877.

    Google Scholar 

  31. J. N. Moorthy, K. Senapati, K. N. Parida, S. Jhulki, K. Sooraj, N. N. Nair, J. Org. Chem. 2011, 76, 9593–9601.

    Google Scholar 

  32. J. N. Moorthy, K. N. Parida, J. Org. Chem. 2014, 79, 11431–11439.

    Google Scholar 

  33. T. Yakura, A. Yamada, N. Noda, T. Fujiwara, H. Nambu, Asian J. Org. Chem. 2014, 3, 421–424.

    Google Scholar 

  34. M. C. Marcotullio, F. Epifano, M. Curini, Trends Org. Chem. 2003, 10, 21–34.

    Google Scholar 

  35. H. Hussain, I. R. Green, I. Ahmed, Chem. Rev. 2013, 113, 3329–3371.

    Google Scholar 

  36. C. Hartmann, V. Mayer, Chem. Ber. 1893, 26, 1727–1732.

    Google Scholar 

  37. R. J. Kennedy, A. M. Stock, J. Org. Chem. 1960, 25, 1901–1906.

    Google Scholar 

  38. T. Pandurengan, P. Maruthamuthu, Bull. Chem. Soc. Jpn. 1981, 54, 3551–3555.

    Google Scholar 

  39. J. R. McCarthy, D. P. Matthews, J. P. Paolini, Org. Synth. 1995, 72, 209–212.

    Google Scholar 

  40. B. R. Travis, M. Sivakumar, G. O. Hollist, B. Borhan, Org. Lett. 2003, 5, 1031–1034.

    Google Scholar 

  41. V. V. Zhdankin, A. Y. Koposov, B. C. Netzel, N. V. Yashin, B. P. Rempel, M. J. Ferguson, R. R. Tykwinski, Angew. Chem. Int. Ed. 2003, 42, 2194–2196.

    Google Scholar 

  42. T. Yakura, Y. Horiuchi, Y. Nishimura, A. Yamada, H. Nambu, T. Fujiwara, Adv. Synth. Catal. 2016, 358, 869–873.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fujiwara, T., Horiuchi, Y., Yamada, A., Nambu, H., Yakura, T. (2017). Practical and Environmentally Friendly Transformation of Tetrahydrofuran-2-Methanols to γ-Lactones via Oxidative Cleavage. In: Tomioka, K., Shioiri, T., Sajiki, H. (eds) New Horizons of Process Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3421-3_13

Download citation

Publish with us

Policies and ethics