Advertisement

Signature Classification Using Image Moments

  • Akhilesh Kushwaha
  • Aruni Singh
  • Satyendra Kumar Shrivastav
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 518)

Abstract

Here, in this contribution we want to demonstrate the person’s identity by their behavioral biometric characteristics, which is the signature of the person. The shape of the signature is used for the evaluation purpose to classify the signatures. For the feature extraction of signatures, we have explored the idea of Hu and Zernike moments. The experiments incorporates the classification using SVM and found accuracy 81–96% for online signature data and 59–72% for offline signature data.

Keywords

Moments Hu Zernike SVM Biometrics 

References

  1. 1.
    Hu, M.K.: Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on 8(2) (1962) 179–187CrossRefzbMATHGoogle Scholar
  2. 2.
    Smith, F.W., Wright, M.H.: Automatic ship photo interpretation by the method of moments. Computers, IEEE Transactions on 100(9) (1971) 1089–1095CrossRefGoogle Scholar
  3. 3.
    Dudani, S.A., Breeding, K.J., McGhee, R.B.: Aircraft identification by moment invariants. Computers, IEEE Transactions on 100(1) (1977) 39–46CrossRefGoogle Scholar
  4. 4.
    Dirilten, H., Newman, T.G.: Pattern matching under affine transformations. Computers, IEEE Transactions on 100(3) (1977) 314–317MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wong, R.Y., Hall, E.L.: Scene matching with invariant moments. Computer Graphics and Image Processing 8(1) (1978) 16–24CrossRefGoogle Scholar
  6. 6.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am 70(8) (1980) 920–930MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sheng, Y., Arsenault, H.H.: Experiments on pattern recognition using invariant fourier-mellin descriptors. JOSA A 3(6) (1986) 771–776CrossRefGoogle Scholar
  8. 8.
    Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by krawtchouk moments. Image Processing, IEEE Transactions on 12(11) (2003) 1367–1377MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pippin, C.E.: Dynamic signature verification using local and global features. Georgia Institute of Technology (2004)Google Scholar
  10. 10.
    Afsar, F., Arif, M., Farrukh, U.: Wavelet transform based global features for online signature recognition. In: 9th International Multitopic Conference, IEEE INMIC 2005, IEEE (2005) 1–6Google Scholar
  11. 11.
    Lam, C.F., Kamins, D., Zimmermann, K.: Signature recognition through spectral analysis. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’87. Volume 12., IEEE (1987) 1790–1792Google Scholar
  12. 12.
    El-Henawy, I., Rashad, M., Nomir, O., Ahmed, K.: Online signature verification: State of the art. International Journal of Computers & Technology 4(2c) (2013)Google Scholar
  13. 13.
    Liao, S.X., Pawlak, M.: On image analysis by moments. Pattern analysis and machine intelligence, IEEE Transactions on 18(3) (1996) 254–266CrossRefGoogle Scholar
  14. 14.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12(5) (1990) 489–497CrossRefGoogle Scholar
  15. 15.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27 Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  16. 16.
    Yan Yeung, Hong Chang, Y.X.S.G.R.K.T.M., Rigoll, G.: Online signature database. SVC2004: First International Signature Verification Competition. Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, 15–17 July 2004.) Svc2004 (2004)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Akhilesh Kushwaha
    • 1
  • Aruni Singh
    • 1
  • Satyendra Kumar Shrivastav
    • 1
  1. 1.K.N.I.TSultanpurIndia

Personalised recommendations