Skip to main content

Dasatinib, Nilotinib, Bosutinib, Ponatinib, and Other TKIs

  • Chapter
  • First Online:
  • 1508 Accesses

Abstract

ABL tyrosine kinase inhibitor (TKI) imatinib mesylate has led to a marked change in the treatment of chronic myeloid leukemia (CML). However, resistance and intolerance to imatinib are frequently reported, particularly in patients with advanced-stage disease; this leads to around 30% of CML patients discontinuing imatinib treatment. Point mutations within the ABL kinase domain, which interfere with imatinib binding, are the most critical cause of imatinib resistance. To overcome this, the second-generation ATP-competing ABL TKIs such as dasatinib, nilotinib, bosutinib, and bafetinib have been developed. Despite promising clinical results of these, a common mutation, T315I, is not effectively targeted by any of the second-generation ABL TKIs. Therefore, a third-generation ABL TKI, ponatinib, was developed and shows good clinical efficacy against CML cells harboring the T315I mutation. Thus, treatments for CML are progressing rapidly, and further evolution is expected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Druker BJ. Perspectives on the development of imatinib and the future of cancer research. Nat Med. 2009;15:1149–52.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    Article  CAS  PubMed  Google Scholar 

  3. Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100:1965–71.

    Article  CAS  PubMed  Google Scholar 

  4. Quintás-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond – exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol. 2009;6:535–43.

    Article  PubMed  Google Scholar 

  5. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–80.

    Article  CAS  PubMed  Google Scholar 

  6. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105:2640–53.

    Article  CAS  PubMed  Google Scholar 

  7. Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg D, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.

    Article  CAS  PubMed  Google Scholar 

  9. Golas JM, Arndt K, Etienne D, et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 2003;3:375–81.

    Google Scholar 

  10. Kimura S, Naito H, Segawa H, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–54.

    Article  CAS  PubMed  Google Scholar 

  11. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  PubMed  Google Scholar 

  12. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kimura S, Ando T, Kojima K. BCR-ABL point mutations and TKI treatment in CML patients. J Hematol Transf. 2014;2:1022–33.

    Google Scholar 

  14. O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weisberg E, Manley PW, Sandra W, et al. Structure of ABL in complex with imatinib, nilotinib and dasatinib. Nat Rev Cancer. 2007;7:345–56.

    Article  CAS  PubMed  Google Scholar 

  16. Asaki T, Sugiyama Y, Hamamoto T, et al. Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitors. Bioorg Med Chem Lett. 2006;16:1421–5.

    Article  CAS  PubMed  Google Scholar 

  17. Deguchi Y, Kimura S, Ashihara E, et al. Comparison of imatinib, dasatinib, nilotinib and INNO-406 in imatinib-resistant cell lines. Leuk Res. 2008;32:980–3.

    Article  CAS  PubMed  Google Scholar 

  18. Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27:469–71.

    Article  CAS  PubMed  Google Scholar 

  19. Christopher LJ, Cui D, Wu C, et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos. 2008;36:1357–64.

    Article  CAS  PubMed  Google Scholar 

  20. Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26:3204–12.

    Article  CAS  PubMed  Google Scholar 

  21. Yokota A, Kimura S, Masuda S, et al. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system and cyclosporine A augments its in vivo activity. Blood. 2007;109:306–14.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi N, Miura M, Niioka T, et al. Influence of H2-receptor antagonists and proton pump inhibitors on dasatinib pharmacokinetics in Japanese leukemia patients. Cancer Chemother Pharmacol. 2012;69:999–1004.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Christopher LJ, Cui D, et al. Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos. 2009;36:1828–39.

    Article  Google Scholar 

  24. Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–6.

    Article  CAS  PubMed  Google Scholar 

  25. Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  CAS  PubMed  Google Scholar 

  26. Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014;89:282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfeifer H, Wassmann B, Hofmann WK, et al. Risk and prognosis of central nervous system leukemia in patients with Philadelphia chromosome-positive acute leukemias treated with imatinib mesylate. Clin Cancer Res. 2003;9:4674–81.

    CAS  PubMed  Google Scholar 

  28. Hegedus C, Ozvegy-Laczka C, Apati A, et al. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol. 2009;158:1153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porkka K, Koskenvesa P, Lundán T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112:1005–12.

    Article  CAS  PubMed  Google Scholar 

  30. Quintás-Cardama A, Han X, Kantarjian H, et al. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114:261–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mustjoki S, Ekblom M, Arstila TP, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23:1398–405.

    Article  CAS  PubMed  Google Scholar 

  32. Mosleji JJ, Deininger M. Tyrosine Kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33:4210–8.

    Article  Google Scholar 

  33. Kim DH, Kamel-Reid S, Chang H, et al. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica. 2009;94:135–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fei F, Yu Y, Schmitt A, Rojewski MT, et al. Dasatinib inhibits the proliferation and function of CD4+CD25+ regulatory T cells. Br J Haematol. 2009;144:195–205.

    Article  CAS  PubMed  Google Scholar 

  35. Mustjoki S, Auvinen K, Kreutzman A, et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia. 2013;27:914–24.

    Article  CAS  PubMed  Google Scholar 

  36. Imagawa J, Tanaka H, Okada M, et al. Discontinuation of dasatinib in chronic myeloid leukaemia patients who have maintained deep molecular response for more than 1 year: the prospective, multicentre Dasatinib Discontinuation (DADI) Trial. Lancet Haematol. 2015;2:e528–3.

    Article  PubMed  Google Scholar 

  37. Tanaka C, Yin OQ, Sethuraman V, et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther. 2010;87:197–203.

    Article  CAS  PubMed  Google Scholar 

  38. Deremer DL, Ustun C, Natarajan K. Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther. 2008;30:1956–75.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang H, Sheng J, Ko JH, et al. Inhibitory effect of single and repeated doses of nilotinib on the pharmacokinetics of CYP3A substrate midazolam. J Clin Pharmacol. 2015;55:401–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yin OQ, Gallagher N, Fischer D, et al. Effect of the proton pump inhibitor esomeprazole on the oral absorption and pharmacokinetics of nilotinib. J Clin Pharmacol. 2010;50:960–7.

    Article  CAS  PubMed  Google Scholar 

  41. White DL, Saunders VA, Dang P, et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108:697–704.

    Article  CAS  PubMed  Google Scholar 

  42. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110:3540–6.

    Article  CAS  PubMed  Google Scholar 

  43. Kantarjian H, O’Brien S, Talpaz M, et al. Outcome of patients with Philadelphia chromosome-positive chronic myelogenous leukemia post-imatinib mesylate failure. Cancer. 2007;109:1556–60.

    Article  CAS  PubMed  Google Scholar 

  44. Nicolini FE, Etienne G, Dubruille V, et al. Nilotinib and peginterferon alfa-2a for newly diagnosed chronic-phase chronic myeloid leukaemia (NiloPeg): a multicentre, non-randomised, open-label phase 2 study. Lancet Haematol. 2015;2:e37–46.

    Article  PubMed  Google Scholar 

  45. Ottmann OG, Larson RA, Kantarjian HM, et al. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome – positive acute lymphoblastic leukemia. Leukemia. 2013;27:1411–3.

    Article  CAS  PubMed  Google Scholar 

  46. Kim DY, Joo YD, Lim SN, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–56.

    Article  CAS  PubMed  Google Scholar 

  47. Aichberger KJ, Herndlhofer S, Schernthaner GH, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86:533–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kim TD, Rea D, Schwarz M, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27:1316–21.

    Article  CAS  PubMed  Google Scholar 

  49. Giles FJ, Mauro MJ, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27:1310–5.

    Article  CAS  PubMed  Google Scholar 

  50. Fei F, Yu Y, Schmitt A, et al. Effects of nilotinib on regulatory T cells: the dose matters. Mol Cancer. 2010;9:22–31.

    Article  PubMed  PubMed Central  Google Scholar 

  51. https://clinicaltrials.gov/ct2/show/NCT01698905

  52. https://clinicaltrials.gov/ct2/show/NCT01784068

  53. https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000008409&language=J

  54. Levinson NM, Boxer SG. A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nat Chem Biol. 2014;10:127–32.

    Article  CAS  PubMed  Google Scholar 

  55. Daud AI, Krishnamurthi SS, Saleh MN, et al. Phase I study of bosutinib, a src/abl tyrosine kinase inhibitor, administered to patients with advanced solid tumors. Clin Cancer Res. 2012;18:1092–100.

    Article  CAS  PubMed  Google Scholar 

  56. Abbas R, Hug BA, Leister C, et al. A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol. 2012;69:221–7.

    Article  CAS  PubMed  Google Scholar 

  57. Abbas R, Hug BA, Leister C, et al. Effect of ketoconazole on the pharmacokinetics of oral bosutinib in healthy subjects. J Clin Pharmacol. 2011;51:1721–7.

    Article  CAS  PubMed  Google Scholar 

  58. Abbas R, Leister C, Sonnichensen D. A clinical study to examine the potential effect of lansoprazole on the pharmacokinetics of bosutinib when administered concomitantly to healthy subjects. Clin Drug Invest. 2013;33:589–95.

    Article  CAS  Google Scholar 

  59. Cortes JE, Kantarjian HM, Brummendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118:4567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khoury HJ, Cortes JE, Kantarjian HM, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119:3403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brümmendorf TH, Cortes JE, Khoury HJ, et al. Factors influencing long-term efficacy and tolerability of bosutinib in chronic phase chronic myeloid leukaemia resistant or intolerant to imatinib. Br J Haematol. 2016;172:97–110.

    Article  PubMed  Google Scholar 

  62. García-Gutiérrez V, Martinez-Trillos A, Lopez Lorenzo JL, et al. Bosutinib shows low cross intolerance, in chronic myeloid leukemia patients treated in fourth line. Results of the Spanish compassionate use program. Am J Hematol. 2015;90:429–33.

    Article  PubMed  Google Scholar 

  63. Nakaseko C, Takahashi N, Ishizawa K, et al. A phase 1/2 study of bosutinib in Japanese adults with Philadelphia chromosome-positive chronic myeloid leukemia. Int J Hematol. 2015;101:154–64.

    Article  CAS  PubMed  Google Scholar 

  64. Brümmendorf TH, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168:69–81.

    Article  PubMed  Google Scholar 

  65. Gambacorti-Passerini C, Cortes JE, Lipton JH, et al. Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol. 2014;89:947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Douxfils J, Haguet H, Mullier F, et al. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis. JAMA Oncol. 2016. doi:10.1001/jamaoncol.2015.5932.

  67. Kantarjian H, le Coutre P, Cortes J, et al. Phase I study of INNO-406, a dual Abl/Lyn kinase inhibitor, in Philadelphia chromosome-positive leukemias post-imatinib resistance or intolerance. Cancer. 2010;16:2665–72.

    Google Scholar 

  68. Imam SZ, Trickler W, Kimura S, et al. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS One. 2013;8:e65129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou T, Commodore L, Huang WS, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des. 2011;77:1–11.

    Article  CAS  PubMed  Google Scholar 

  70. Gozgit JM, Wong MJ, Moran L, et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther. 2012;11:690–9.

    Article  CAS  PubMed  Google Scholar 

  71. Khorashad JS, Kelley TW, Szankasi P, et al. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood. 2013;121:489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Narasimhan NI, Dorer DJ, Niland K, et al. Effects of food on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharm Ther. 2013;38:440–4.

    Article  CAS  PubMed  Google Scholar 

  74. Narasimhan NI, Dorer DJ, Niland K, et al. Effects of ketoconazole on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharmacol. 2013;53:974–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Narasimhan NI, Dorer DJ, Davis J, et al. Evaluation of the effect of multiple doses of lansoprazole on the pharmacokinetics and safety of ponatinib in healthy subjects. Clin Drug Investig. 2014;34:723–9.

    Article  CAS  PubMed  Google Scholar 

  76. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

    Article  CAS  PubMed  Google Scholar 

  77. Jain P, Kantarjian H, Jabbour E, et al. Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematol. 2015;2:e376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zabriskie MS, Eide CA, Tantravahi SK, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26:428–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parker WT, Yeung DT, Yeoman AL, et al. The impact of multiple low-level BCR-ABL1 mutations on response to ponatinib. Bolld. 2016;127:1870–80.

    CAS  Google Scholar 

  80. EudraCT number 2012-005696-14.

    Google Scholar 

  81. Mian AA, Rafiei A, Haberbosch I, et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia. 2015;29:1104–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kimura, S. (2017). Dasatinib, Nilotinib, Bosutinib, Ponatinib, and Other TKIs. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics