Skip to main content

Therapies Targeting Leukemic Stem Cells

  • Chapter
  • First Online:
Chemotherapy for Leukemia
  • 1365 Accesses

Abstract

Despite improvements in the treatment of leukemia, relapse remains a substantial problem. Relapse often results from the persistence of leukemic stem cells (LSCs) that are difficult to eradicate with conventional therapies; therefore, novel therapeutic strategies with the ability to target LSCs are required. In principle, differentiated progenitor cells have no self-renewal ability. However, there is a possibility that LSCs originate from these differentiated progenies when they acquire self-renewal ability. To become LSCs, differentiated leukemic progenitors must have self-renewal ability. Molecules that control self-renewal and proliferation, molecules that regulate the cell cycle and differentiation, molecules that enhance cell survival, molecules constituting the hematopoietic (leukemic) niche that exists in hypoxic environments, and cell surface molecules specific for leukemia are candidates for eradicating LSCs. However, to specifically eliminate LSCs while sparing normal hematopoietic stem cells, the detailed molecular mechanisms and pathophysiology of LSCs need to be clarified by sophisticated gene sequencing technologies and disease models. Many patients with incurable leukemias are eagerly awaiting the benefits of new targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015;26(7):27–36.

    Article  Google Scholar 

  2. Yang M, Lie P, Huang P. Cancer stem cells, metabolism, and therapeutic significance. Tumour Biol. 2016;37:5735–42.

    Article  CAS  PubMed  Google Scholar 

  3. Cheung AM, Kwong YL, Liang R, Leung AY. Stem cell model of hematopoiesis. Curr Stem Cell Res Ther. 2006;1:305–15.

    Article  CAS  PubMed  Google Scholar 

  4. Moore MA, Williams N, Metcalf D. In vitro colony formation by normal and leukemic hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst. 1973;50:603–23.

    Article  CAS  PubMed  Google Scholar 

  5. Warner JK, Wang JC, Hope KJ, Jin L, Dick JE. Concepts of human leukemic development. Oncogene. 2004;23:7164–77.

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  7. Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci. 2005;1044:1–5.

    Article  PubMed  Google Scholar 

  8. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.

    Article  CAS  PubMed  Google Scholar 

  9. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–22.

    Article  CAS  PubMed  Google Scholar 

  10. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19:138–52.

    Article  CAS  PubMed  Google Scholar 

  11. Gilliland DG, Tallman MS. Focus on acute leukemias. Cancer Cell. 2002;1:417–20.

    Article  CAS  PubMed  Google Scholar 

  12. Panagopoulos I, Lilljebjörn H, Strömbeck B, Hjorth L, Olofsson T, Johansson B. MLL/GAS7 fusion in a pediatric case of t(11;17) (q23;p13)-positive precursor B-cell acute lymphoblastic leukemia. Haematologica. 2006;91:1287–8.

    PubMed  Google Scholar 

  13. Schwieger M, Schüler A, Forster M, Engelmann A, Arnold MA, Delwel R, et al. Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood. 2009;114:2476–88.

    Article  CAS  PubMed  Google Scholar 

  14. Cavazzini F, Bardi A, Tammiso E, Ciccone M, Russo-Rossi A, Divona D, et al. Validation of an interphase fluorescence in situ hybridization approach for the detection of MLL gene rearrangements and of the MLL/AF9 fusion in acute myeloid leukemia. Haematologica. 2006;91:381–5.

    CAS  PubMed  Google Scholar 

  15. Ye M, Zhang H, Yang H, Koche R, Staber PB, Cusan M, et al. Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell. 2015;17:611–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β catenin signaling pathway in human cancers. Expert Opin Ther Targets. 2011;15:873–87.

    Article  CAS  PubMed  Google Scholar 

  17. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  18. Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 2006;5:1026–33.

    Article  CAS  PubMed  Google Scholar 

  19. Martinelli G, Oehler VG, Papayannidis C, Courtney R, Shaik MN, Zhang X, et al. Treatment with PF-04449913, an oral smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study. Lancet Haematol. 2015;2:e339–46.

    Article  PubMed  Google Scholar 

  20. Brechbiel J, Miller-Moslin K, Adjei AA. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer. Cancer Treat Rev. 2014;40:750–9.

    Article  CAS  PubMed  Google Scholar 

  21. Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2:17ra9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.

    Article  PubMed  Google Scholar 

  24. Rendtlew Danielsen JM, Knudsen LM, Dahl IM, Lodahl M, Rasmussen T. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Brit J Haematol. 2007;138:756–60.

    Article  Google Scholar 

  25. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs Jr KD, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A. 2007;104:11008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.

    Article  CAS  PubMed  Google Scholar 

  28. He SZ, Busfield S, Ritchie DS, Hertzberg MS, Durrant S, Lewis ID, et al. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma. 2015;56:1406–15.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, et al. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood. 2016;127:122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kikushige Y, Akashi K. TIM-3 as a therapeutic target for malignant stem cells in acute myelogenous leukemia. Ann N Y Acad Sci. 2012;1266:118–23.

    Article  CAS  PubMed  Google Scholar 

  31. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7:708–17.

    Article  CAS  PubMed  Google Scholar 

  32. Monney L, Sabatos CA, Gaglia J, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41.

    Article  CAS  PubMed  Google Scholar 

  33. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17:341–52.

    Article  CAS  PubMed  Google Scholar 

  34. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore antitumor immunity. J Exp Med. 2010;207:2187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol. 2011;32:345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakuishi K, Ngiow SF, Sullivan JM, Teng MW, Kuchroo VK, Smyth MJ, et al. TIM3 + FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. OncoImmunology. 2013;2:e23849.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ågerstam H, Karlsson C, Hansen N, Sandén C, Askmyr M, von Palffy S, et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci U S A. 2015;112:10786–91.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell-associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–66.

    Article  PubMed  Google Scholar 

  39. Hayashi Y, Hirai H, Kamio N, Yao H, Yoshioka S, Miura Y, et al. C/EBPβ promotes BCR-ABL-mediated myeloid expansion and leukemic stem cell exhaustion. Leukemia. 2013;27:619–28.

    Article  CAS  PubMed  Google Scholar 

  40. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappa B is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    Article  CAS  PubMed  Google Scholar 

  41. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappa B pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–27.

    Article  CAS  PubMed  Google Scholar 

  43. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26:120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okamoto T, Coultas L, Metcalf D, van Delft MF, Glaser SP, Takiguchi M, et al. Enhanced stability of Mcl1, a prosurvival Bcl2 relative, blunts stress-induced apoptosis, causes male sterility, and promotes tumorigenesis. Proc Natl Acad Sci U S A. 2014;111:261–6.

    Article  CAS  PubMed  Google Scholar 

  46. Vela L, Marzo I. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol. 2015;23:74–81.

    Article  CAS  PubMed  Google Scholar 

  47. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan SM, Majeti R. Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol. 2013;98:648–57.

    Article  CAS  PubMed  Google Scholar 

  49. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of preleukemic hematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A. 2014;111:2548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guzman ML, Yang N, Sharma KK, Balys M, Corbett CA, Jordan CT, et al. Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol Cancer Ther. 2014;13:1979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ho AD, Wagner W. Bone marrow niche and leukemia. Ernst Schering Found Symp Proc. 2006;5:125–39.

    Google Scholar 

  53. Nagasawa T. CXCL12/SDF-1 and CXCR4. Front Immunol. 2015;6:301.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics. 2013;3:34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tavor S, Petit I. Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Semin Cancer Biol. 2010;20:178–85.

    Article  CAS  PubMed  Google Scholar 

  56. Konopleva M, Benton CB, Thall PF, Zeng Z, Shpall E, Ciurea S, et al. Leukemia cell mobilization with G-CSF plus plerixafor during busulfan-fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplant. 2015;50:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic stem cell niche in health and disease. Annu Rev Pathol. 2016;11:555–81.

    Article  CAS  PubMed  Google Scholar 

  59. Rouault-Pierre K, Hamilton A, Bonnet D. Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther. 2016;16:463–76.

    Article  CAS  PubMed  Google Scholar 

  60. Vukovic M, Guitart AV, Sepulveda C, Villacreces A, O'Duibhir E, Panagopoulou TI, et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J Exp Med. 2015;212:2223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56:2826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown JR, Tesar B, Yu L, Werner L, Takebe N, Mikler E, et al. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56:3336–42.

    Article  CAS  PubMed  Google Scholar 

  63. Thomas D, Powell JA, Vergez F, Segal DH, Nguyen NY, Baker A, et al. Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood. 2013;122:738–48.

    Article  CAS  PubMed  Google Scholar 

  64. Batlevi CL, Kasamon Y, Bociek RG, Lee P, Gore L, Copeland A, et al. ENGAGE- 501: phase 2 study of entinostat (SNDX-275) in relapsed and refractory Hodgkin lymphoma. Haematologica. 2016;101(8):968–75.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McGrath JP, Williamson KE, Balasubramanian S, Odate S, Arora S, Hatton C, et al. Pharmacological inhibition of the histone lysine demethylase KDM1A suppresses the growth of multiple acute myeloid leukemia subtypes. Cancer Res. 2016;76:1975–88.

    Article  CAS  PubMed  Google Scholar 

  67. Przespolewski A, Wang ES. Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia. Expert Opin Investig Drugs; 2016, Apr 21:1–10. [Epub ahead of print]

    Google Scholar 

  68. Lehnertz B, Pabst C, Su L, Miller M, Liu F, Yi L, et al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev. 2014;28:317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G, et al. Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood. 2014;124(7):1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, et al. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell. 2014;15:775–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Badar T, Handisides DR, Benito JM, Richie MA, Borthakur G, Jabbour E, et al. A phase I study of evofosfamide, an investigational hypoxia-activated prodrug, in patients with advanced leukemia. Am J Hematol. 2016;91:800–5.

    Article  CAS  PubMed  Google Scholar 

  72. Fiskus W, Sharma S, Saha S, Shah B, Devaraj SG, Sun B, et al. Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia. 2015;29:1267–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partly by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and nonrestricted Grants from Bristol-Myers Squibb, Astellas, and Novartis Pharmaceuticals Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taira Maekawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maekawa, T. (2017). Therapies Targeting Leukemic Stem Cells. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics