Skip to main content

Plasma Surface Modification of Biomaterials for Biomedical Applications

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 66))

Abstract

Application oriented selection of a material depends on the bulk properties of that material. However, a first encountering feature of any material in an application is its surface and thus material’s surface is one of the foremost parameter that decides the fate of material performance. Modulating the surface properties is considered as a potential approach to meet the application requirement. In past, various techniques (like, chemical, γ-irradiation, mechanical abrasion) have been developed for the surface modification of materials. These methods have certain disadvantages, like chemical treatment involve the disposal of polluted solvents/water in the environment, whereas other techniques may affect bulk properties of the material. Since three decades, plasma surface modification technique has attracted attention of scientists and technologists for creating new surfaces for various end-use applications such as textiles, food packaging, coatings, medical devices etc. Especially, low temperature plasma (low pressure and atmospheric pressure glow discharge) has attracted for its potential application in the new biomedical devices and biomaterials development. Plasma processing has proved itself a very promising and potent technology for modification of surface properties in an effective, environment friendly and economical way for converting low cost materials into a value added materials. The surface properties and biocompatibility can be enhanced selectively and precisely without affecting material’s bulk properties by the use of plasma surface modification technique. This chapter is providing a brief overview of low temperature plasma as a versatile technology for surface modification and its application pertaining to biomedical materials research. Various inferences are also drawn from the types of plasma used in the biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3D:

Three dimensional

AAc:

Acrylic acid

AC:

Alternate current

ACP:

Amorphous calcium phosphate

APGD:

Atmospheric pressure glow discharge

APPJ:

Atmospheric pressure plasma jet

APPS:

Atmospheric pressure plasma system

APTT:

Activated partial thromboplastin time

Ar:

Argon

BMA:

Butyl methacrylate

BSA:

Bovine serum albumin

CAP:

Competitive ablation and polymerization

CG:

Cationized gelatin

CHI:

Chitosan

CN:

Carbon nitride

DBD:

Dielectric barrier discharge

DC:

Direct current

DDSs:

Drug delivery systems

DLC:

Diamond like coating

EC:

Endothelial cell

ECM:

Extra cellular matrix

ePTFE:

Expanded polytetrafluoroethylene

EtO:

Ethylene oxide

EVA:

Polyethylene-co-vinyl acetate

FAK:

Focal adhesion kinase

FDA:

Food and drug administration

FEP:

Poly (tetrafluoroethylene-co-tetrafluoropropylene)

Fn:

Fibronectin

FTIR:

Fourier transform infrared

HA:

Hydroxyapatite

HAEC:

Human aortic endothelial cells

HMDSO:

Hexamethyldisiloxane

HUVEC:

Human vascular endothelial cell

IOLs:

Intraocular lens

KDR:

Kinase-insert domain-containing receptor

LDPE:

Low density polyethylene

LPPS:

Low pressure plasma system

LTE:

Local thermodynamic equilibrium

LTP:

Low temperature plasma

NF:

Nanofibers

NVP:

N-vinyl-2-pyrrolidone

PAECs:

Pig aorta endothelial cells

PCL:

Poly caprolactone

pdAA:

Plasma deposited acrylic acid

PDC:

Pulsed-DC

PE:

Polyethylene

PECVD:

Plasma enhanced chemical vapour deposition

PEEK:

Polyether-ether-ketone

PEG:

Poly (ethylene glycol)

PEN:

Polyethylene naphthalate

PEO:

Poly ethyleneoxide

PET:

Polyethylene terephthalate

PIII:

Plasma immersion ion implantation

PIIID:

PIII-deposition

PLA:

Poly (D,L-lactic acid)

PLGA:

Poly (D,L-lactic acid-co-glycolic acid)

PLLA:

Poly (L-Lactic acid)

PMMA:

Poly methyl methacrylate

PP:

Polypropylene

ppAA:

Plasma polymerized acrylic acid

ppAAm:

Plasma polymerized allylamine

pPEO:

Plasma polyethyleneoxide

ppHMDS:

Plasma polymerized hexamethyldisiloxane

ppPEO:

Plasma polymerized polyethyleneoxide

ppTEOS:

Plasma polymerized tetraethyl orthosilicate

pPTFE:

Plasmapolytetrafluoroethylene

PS:

Polystyrene

PSF:

Polysulfone

PSP:

Polystyrene plate

PTFE:

Polytetrafluoroethylene

PU:

Polyurethane

PVC:

Poly vinyl chloride

RbMVEC:

Rabbit microvascular endothelial cell

RER:

Remote exposure reactor

RF:

Radio frequency

RFGD:

Radio frequency glow discharge

ROS:

Reactive oxygen species

SBF:

Simulated body fluid

SDBD:

Surface-DBD

SE:

Surface energy

SF6 :

Sulphur hexafluoride

TCP:

Tissue cultured plates

TE:

Tissue engineering

TEM:

Transmission electron microscope

TEOS:

Tetra ethyl orthosilicate

TMOS:

Tetra methyl orthosilicate

VDBD:

Volume-DBD

VOC:

Volatile organic compound

VSMC:

Vascular smooth muscle cell

WBCT:

Whole blood clotting time

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  • Abenojar J, T-Coque R, Martínez MA, Martínez JMM (2009) Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf Coat Technol 203(16):2173–2180

    Google Scholar 

  • Adler S, Scherrer M, Daschner FD (1998) Costs of low-temperature plasma sterilization compared with other sterilization methods. J Hosp Infect 40(2):125–134

    Article  Google Scholar 

  • Akitsu T, Ohkawa H, Tsuji M, Kimura H, Kogoma M (2005) Plasma sterilization using glow discharge at atmospheric pressure. Surf Coat Technol 193(1–3):29–34

    Article  Google Scholar 

  • Alexandrov SE (2009) Chemical vapour deposition: precursors, processes and applications. In: Jones AC, Michel LH (eds), Royal society of chemistry print publication date: 22 Dec 2008 ISBN: 978-0-85404-465-8, doi:10.1039/9781847558794

  • An YH, Friedman RJ (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30(2):141–152

    Article  Google Scholar 

  • Anders A (2000) Handbook of plasma immersion ion implantation and deposition. Wiley, Hoboken, NJ 2

    Google Scholar 

  • Andrews KD, Hunt JA, Black RA (2007) Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds. Biomaterials 28:1014–1026

    Article  Google Scholar 

  • Arefi F, Andere V, Montazer-Rahmati P, Amouroux J (1992) Plasma polymerization and surface treatment of polymers. Pure Appl Chem 64(5):715–723

    Article  Google Scholar 

  • Arenholz E, Svorcík V, Kefer T, Heitz J, Bauerle D (1991) Structure formation in UV-laser ablated poly-ethylene-terephthalate (PET). Appl Phys A 53(4):330–331

    Article  Google Scholar 

  • Arndt S, Wacker E, Kaufmann S, Li YF, Shimizu T, Thomas HM, Morfill GE, Karrer S, Zimmermann JL, Bosserhoff AK (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 22(4):284–289

    Article  Google Scholar 

  • Arnoult G, Cardoso RP, Belmonte T, Henrion G (2008) Flow transition in a small scale microwave plasma jet at atmospheric pressure. Appl Phys Lett (93)19:191507

    Google Scholar 

  • Arolkar GA, Jacob SM, Pandiyaraj KN, Kelkar-ManeVR Deshmukh RR (2016) Effect of TEOS plasma polymerization on Corn Starch/Poly(ε-caprolactone) film: characterization, properties and biodegradation. RSC Adv 6:16779–16789

    Article  Google Scholar 

  • Artemenko A, Kylián O, Choukourov A, Gordeev I, Petr M, Vandrovcová M, Polonskyi O, Bačáková L, Slavinska D, Biederman H (2012) Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications. Thin Solid Films 520(24):7115–7124

    Article  Google Scholar 

  • Ayhan F, Ayhan H, Piskin E (1998) Sterilization of sutures by low temperature argon plasma. J Bioact Compatible Polym 13(1):65–72

    Google Scholar 

  • Baier RE (1970) Surface properties influencing biological adhesion In: Mainly RS (ed) Adhesion in biological systems, Academic Press, New York. ISBN: 9780323156110

    Google Scholar 

  • Balazs DJ, Triandafillu K, Chevolot Y, Aronsson B-O, Harms H, Descouts P, Mathieu HJ (2003) Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf Interface Anal 35:301–309

    Article  Google Scholar 

  • Barbucci R, Torricelli P, Fini M, Pasqui D, Favia P, Sardella E, d’Agostino R, Giardino R (2005) Proliferative and re-differentiative effects of photo-immobilized micro-patterned hyaluronan surfaces on chondrocyte cells. Biomaterials 26:7596–7605

    Google Scholar 

  • Bathina MN, Mickelsen S, Brooks C, Jaramillo J, Hepton T, Kusumoto FM (1998) Safety and efficacy of hydrogen peroxide plasma sterilization for repeated use of electrophysiology catheters. J Am Coll Cardiol 32(5):1384–1388

    Article  Google Scholar 

  • Beyer D, Knoll W, Ringsdorf H, Wang JH, Timmons RB, Sluka P (1997) Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. J Biomed Mater Res 36(2):181–189

    Article  Google Scholar 

  • Bhat NV, Nadiger GS (1978) Effect of nitrogen plasma on the morphology and allied textile properties of tassar silk fibres and fabrics. Text Res J 48:685–691

    Article  Google Scholar 

  • Bhat NV, Wavhal DS (2000a) Preparation of cellulose triacetate pervaporation membrane by ammonia plasma treatment. J Appl Polym Sci 76:258–265

    Article  Google Scholar 

  • Bhat NV, Wavhal DS (2000b) Characterization of plasma polymerized thiophene onto cellulose acetate membrane and its application to pervaporation. Sep Sci Technol 35(2):227–242

    Article  Google Scholar 

  • Bhat NV, Deshmukh RR (2014) Plasma processing of textiles to enhance their dyeing and surface properties In: Nema SK, Jhala PB (eds) Plasma technologies for textile and apparel woodhead publishing India. ISBN: 978-938-030-855-5

    Google Scholar 

  • Bhat NV, Deshmukh RR (2002) X-ray crystallographic studies of polymeric materials. Indian J Pure Appl Phys 40:361–366

    Google Scholar 

  • Bhat NV, Netravali AN, Gore AV, Sathianarayanan MP, Arolkar GA, Deshmukh RR (2011) Surface modification of cotton fabrics using plasma technology. Text Res J 81(10):1014–1026

    Article  Google Scholar 

  • Bhat NV, Upadhyay DJ, Deshmukh RR, Gupta SK (2003) Investigation of plasma-induced photochemical reaction on a polypropylene surface. J Phys Chem B 107(19):4550–4559

    Article  Google Scholar 

  • Bhattacharyya D, Xu H, Deshmukh RR, Timmons RB Nguyen K (2010) Surface chemistry and polymer film thickness effects on endothelial cell adhesion and proliferation. J Biomed Mater Res 94(2):640–648

    Google Scholar 

  • Bhowmik S, Chaki TK, Ray S, Hoffman F, Dorn L (2004) Effect of surface modification of high-density polyethylene by direct current and radio frequency glow discharge on wetting and adhesion characteristics. Metall Mater Trans A 35(3):865–877

    Article  Google Scholar 

  • Bialasiewicz AA, Fortsch M, Sammann A, Draeger J (1995) Plasma sterilization of selected ophthalmic instruments for combined intraocular surgery. Ophthalmic Res 27(1):124–127

    Article  Google Scholar 

  • Boekema BKHL, Hofmann S, van Ham BJT, Bruggeman PJ, Middelkoop E (2013) Antibacterial plasma at safe levels for skin cells. J Phys D: Appl Phys 46:422001 1–7

    Google Scholar 

  • Boekema BKHL, Vlig M, Guijt D, Hijnen K, Hofmann S, Smits P, Sobota A, van Veldhuizen EM, BruggemanP Middelkoop E (2016) A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet. J Phys D Appl Phys 49(044001):1–10

    Google Scholar 

  • Bogaerts A, Neyts E, Gijbels R, Mullen J (2002) Gas discharge plasmas and their applications. Spectrochemica Acta Part B 57:609–658

    Article  Google Scholar 

  • Borcia G, Brown NMD (2007) Hydrophobic coatings on selected polymers in an atmospheric pressure dielectric barrier discharge. J Phys D Appl Phys 40:1927–1936

    Article  Google Scholar 

  • Borges AMG, Benetoli LO, Licínio MA, Zoldan VC, Santos-Silva MC, Assreuy J, Pasa AA, Debacher NA, Soldi V (2013) Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion. Mater Sci Eng, C 33(3):1315–1324

    Article  Google Scholar 

  • Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL (2013) Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res Genet Toxicol Environ Mutagen 753(1):23–28

    Article  Google Scholar 

  • Bretagnol F, Ceriotti L, Lejeune M, Papadopoulou-Bouraoui A, Hasiwa M, Gilliland D, Ceccone G, Colpo P, Ross F (2006) Functional micropatterned surfaces by combination of plasma polymerization and lift-off processes. Plasma Processes Polym 3:30–38

    Article  Google Scholar 

  • Brétagnol F, Rauscher H, Hasiwa M, Kylián O, Ceccone G, Hazell L, Paul AJ, Lefranc O, Rossi F (2008) The effect of sterilization processes on the bioadhesive properties and surface chemistry of a plasma-polymerized polyethylene glycol film: XPS characterization and L929 cell. Acta Biomater 4(6):1745–1751

    Article  Google Scholar 

  • Brígido-Diego R, Sánchez MS, Ribelles JLG, Pradas MM (2007) Effect of γ-irradiation on the structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks for biomedical applications. J Mater Sci Mater Med 18(5):693–698

    Article  Google Scholar 

  • Bunshah RF (1994) Handbook of deposition technologies for films and coatings: Science, technology and applications. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Bussiahn R, Brandenburg R, Gerling T, Kindel E, Lange H, Lembke N, Weltmann KD, von Woedtke T, Kocher T (2010) The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett 96(14):143701

    Article  Google Scholar 

  • Buttiglione M, Vitiello F, Sardella E, Petrone L, Nardulli M, Favia P, d’Agostino R, Gristina R (2007) Behaviour of SH-SY5Y neuroblastoma cell line grown in different media and on different chemically modified substrates. Biomaterials 28:2932–2945

    Google Scholar 

  • Chandy T, Das GS, Wilson RF, Rao GHR (2000) Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis. Biomaterials 21(7):699–712

    Article  Google Scholar 

  • Chau TT, Kao KC, Blank G, Madrid F (1996) Microwave plasmas for low-temperature dry sterilization. Biomaterials 17(13):1273–1277

    Article  Google Scholar 

  • Chen JP, Su CH (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243

    Article  Google Scholar 

  • Chen JY, Wang LP, Fu KY, Huang N, Leng Y, Leng P, Yang YX, Wang J, Wan GJ, Sun H, Tian XB, Chu PK (2002) Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. (Special 6th Plasma-Based Ion Implantation workshop issue). Surf Coat Technol 156(1–3):289–294

    Article  Google Scholar 

  • Chen Y, Kang ET, Neoh KG, Wang P, Tan KL (2000) Surface modification of polyaniline film by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. Synth Met 110(1):47–55

    Article  Google Scholar 

  • Chen Y, Gao Q, Wan H, Yi J, Wei Y, Liu P (2013) Surface modification and biocompatible improvement of polystyrene film by Ar, O2 and Ar + O2 plasma. Appl Surf Sci 265(15):452–457

    Article  Google Scholar 

  • Chen W, Ji-rong C, Li R (2008) Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl Surf Sci 254(9):2882–2888

    Article  Google Scholar 

  • Chengwei C, Zhiming Z, Xitang T, Wang Y, Sun XT (1995) Influence of rapidly solidified structures on wear behavior of Ti-6AI-4V laser alloyed with TiC. Tribol Trans 38(4):875–878

    Article  Google Scholar 

  • Chu CFL, Lu A, Liszkowski M, Sipehia R (1999) Enhanced growth of animal and human endothelial cells on biodegradable polymers. Biochim Biophys Acta 1472(3):479–485

    Google Scholar 

  • Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36(5–6):143–206

    Article  Google Scholar 

  • Clark DT, Dilks A, Shuttleworth D (1978) Polymer surfaces. In: Clark DT, Feast WJ (eds) 1st edn. Wiley, New York, pp 185–210. ISBN-13: 978-0471996149

    Google Scholar 

  • Clark DT, Hutton DR (1987) Surface modification by plasma techniques. I. The interactions of a hydrogen plasma with fluoropolymer surfaces. J Polym Sci, Part A: Polym Chem 25:2643

    Article  Google Scholar 

  • Claudia ES, Ana-Maria S, Sorin V, Catalin L, Lucia M, Amine A, Gheorghe D (2014) Plasma functionalization of carbon nanowalls and its effect on attachment of fibroblast-like cells. J Phys D Appl Phys 47:265203

    Article  Google Scholar 

  • Cole MA, Thissen H, Losic D, Voelcker NH (2007) A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates. Surf Sci 601(7):1716–1725

    Article  Google Scholar 

  • Conrads H, Schmidt M (2000) Plasma generation and plasma sources. Plasma Sources Sci Technol 9(4):441–454

    Article  Google Scholar 

  • Cools P, Geyter N, Vanderleyden E, Dubruel P, Morent R (2014) Surface analysis of titanium cleaning and activation processes: non-thermal plasma versus other techniques. Plasma Chem Plasma Process 34(4):917–932

    Article  Google Scholar 

  • Cui FZ, Luo ZS (1999) Biomaterials modification by ion-beam processing. Surf Coat Technol 112(1–3):278–285

    Article  Google Scholar 

  • Cui NY, Brown NMD (2002) Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl Surf Sci 189(1–2):31–38

    Article  Google Scholar 

  • Daw R, Candan S, Beck AJ, Devlin AJ, Brook IM, MacNeil S, Dawson RA, Short RD (1998) Plasma copolymer surfaces of acrylic acid/1,7 octadiene: Surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials 19:1717–1725

    Article  Google Scholar 

  • Dearnaley G, Arps JH (2005) Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surf Coat Technol 200(7):2518–2524

    Article  Google Scholar 

  • Dearnaley G, Hartley NEW (1978) Ion implantation into metals and cabrides. Thin Solid Films 54(2):215–232

    Article  Google Scholar 

  • DeFife KM, Colton E, Nakayama Y, Matsuda T, Anderson JM (1999) Spatial regulation and surface chemistry control of monocyte/macrophage adhesion and foreign body giant cell formation by photochemically micropatterned surfaces. J Biomed Mater Res 45(2):148–154

    Article  Google Scholar 

  • Degoutin S, Jimenez M, Casetta M, Bellayer S, Chai F, Blanchemain N, Neut C, Kacem I, Traisnel M, Martel B (2012) Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles. Biomed Mater 7(3):035001

    Article  Google Scholar 

  • Dekker A, Reitsma K, Beugeling T, Bantjes A, Feijien J, van Aken WG (1991) Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials 12(2):130–138

    Article  Google Scholar 

  • Deshmukh RR, Shetty AR (2007a) Surface characterization of polyethylene films modified by gaseous plasma. J Appl Polym Sci 104(1):449–457

    Article  Google Scholar 

  • Deshmukh RR, Shetty AR (2008) Comparison of surface energies using various approaches and their suitability. J Appl Polym Sci 107:3707–3717

    Article  Google Scholar 

  • Deshmukh RR, Bhat NV (2011) Pre-treatments of textiles prior to dyeing: plasma processing. In: Hauser PJ (ed) Textile Dyeing In Tech Publisher, December, ISBN 978-953-307-565-5

    Google Scholar 

  • Deshmukh RR, Shetty AR (2007b) Modification of polyethylene surface using plasma polymerization of silane. J Appl Polym Sci 106(6):4075–4082

    Article  Google Scholar 

  • Deshmukh RR, Bhat NV (2003) The mechanism of adhesion and printability of plasma processed PET films. Mater Res Innovations 7(5):283–290

    Article  Google Scholar 

  • Detomaso L, Gristina R, d’Agostino R, Senesi GS, Favia P (2005b) Plasma deposited acrylic acid coatings: Surface characterization and attachment of 3T3 murine fibroblast cell lines. Surf Coat Technol 200(1–4):1022–1025

    Google Scholar 

  • Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P (2005a) Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 26(18):3831–3841

    Google Scholar 

  • Deynse AV, Cools P, Leys C, Morent R, Geyter ND (2014) Influence of ambient conditions on the aging behaviour of plasma-treated polyethylene surfaces. Surf Coat Technol 258:359–367

    Article  Google Scholar 

  • Djordjevic I, Britcher LG, Kumar S (2008) Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment. Appl Surf Sci 254(7):1929–1935

    Article  Google Scholar 

  • Dhayal M, Cho SI (2006) Leukaemia cells interaction with plasma-polymerized acrylic acid coatings. Vacuum 80(6):636–642

    Article  Google Scholar 

  • Dhayal M, Forder D, Parry KL, Short RD, Bradley JW (2003) Using an afterglow plasma to modify polystyrene surfaces in pulsed radio frequency (RF) argon discharges. In: Proceedings of the eight international conference on plasma surface engineering, surface and coatings technology, pp 174–175:872–876

    Google Scholar 

  • Ding Z, Chen J, Gao S, Chang J, Zhang J, Kang ET (2004) Immobilization of chitosan onto poly-l-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials 25(6):1059–1067

    Article  Google Scholar 

  • Dixon D, Meenan BJ (2012) Atmospheric dielectric barrier discharge treatments of polyethylene, polypropylene, polystyrene and poly(ethylene terephthalate) for enhanced adhesion. J Adhes Sci Technol 26(20–21):2325–2337

    Google Scholar 

  • Dreher D, Junod AF (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32(1):30–38

    Article  Google Scholar 

  • Durante M, Furusawa Y, George K, Gialanella G, Greco O, Grossi G, Matsufuji N, Pugliese M, Yang TC (1998) Rejoining and misrejoining of radiation-induced chromatin breaks IV charged particles. Radiat Res 149(5):446–454

    Article  Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M, Winter J, Woedtke Tvon, Brandenburg R, Hagen Tvondem, Weltmann KD (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44(1):18 (013002)

    Google Scholar 

  • Encinas N, Díaz-Benito B, Abenojar J, Martínez MA (2010) Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf Coat Technol 205(2):396–402

    Article  Google Scholar 

  • Enderle J, Blanchard S, Bronzino J (1999) Microbial Sensors In: Introduction to biomedical engineering, Elsevier Academic Press, New York, p 538. ISBN: 0-12-238660-0

    Google Scholar 

  • Ensinger W (1992) Ion sources for ion beam assisted thin-film deposition. Rev Sci Instrum 63:5217–5233

    Article  Google Scholar 

  • Favia P, d’Agostino R (1998) Plasma treatments and plasma deposition of polymers for biomedical applications. In: Fifth international conference on plasma surface engineering and surface coatings technology, vol 98, issue 1–3, pp 1102–1106

    Google Scholar 

  • Favia P, Perez-Luna VH, Boland T, Castner DG, Ratner BD (1996) Surface chemical composition and fibrinogen adsorption-retention of fluoropolymer films deposited from an RF glow discharge. Plasmas Polym 1(4):299–326

    Article  Google Scholar 

  • Feng X, Zhang J, Xie H, Hu Q, Huang Q, Liu W (2003) The RF plasma polymer of lysine and the growth of human nerve cells on its surface. In: Proceedings from the joint international symposia of the 6th APCPST, 15th SPSM, 4th international conference on open magnetic systems for plasma confinement and 11th KAPRA. Surf Coat Technol 171(1–3):96–100

    Google Scholar 

  • Finke B, Schröder K, Ohl A (2009) Structure retention and water stability of microwave plasma polymerized films from allylamine and acrylic acid. Supplement: eleventh international conference on plasma surface engineering (PSE2008). Plasma Processes Polym (1):S70–S74

    Google Scholar 

  • Finke B, Hempel F, Testrich H, Rebl H, Kylián O, Meichsner J, Biederman H, Nebe B, Weltmann KD, Schröder K (2011) Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. In: PSE 2010 special issue proceedings of the 12th international conference on plasma surface engineering. Surf Coat Technol 205(2):S520–S524

    Google Scholar 

  • Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Ohl A, Nebe B (2007) The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28(30):4521–4534

    Article  Google Scholar 

  • Flounders AW, Brandon DL, Bates AH (1997) Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosens Bioelectron 12(6):447–456

    Article  Google Scholar 

  • Formichi MJ, Guidoin RG, Jausseran JM, Awad JA, Johnston KW, King MW, Courbier R, Marois M, Rouleau C, Batt M, Girard JF, Gosselin C (1988) Expanded PTFE prostheses as arterial substitutes in humans: late pathological findings in 73 excised grafts. Ann Vasc Surg 2(1):14–27

    Article  Google Scholar 

  • Fracassi F, d’Agostino R, Lamendola R, Filippo A, Rapisarda C, Vasquez P (1996) Plasma assisted dry etching of cobalt silicide for microelectronics applications. J Electrochem Soc 143(2):701–707

    Article  Google Scholar 

  • Frankenberg-Schwager M, Frankenberg D (1990) DNA double-strand breaks: their repair and relationship to cell killing in yeast. Int J Radiat Biol 58(4):569–575

    Article  Google Scholar 

  • Fricke K, Koban I, Tresp H, Jablonowski L, Schröder K, Kramer A, Weltmann KD, Tvon Woedtke, Kocher T (2012) Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS ONE 7(8):e42539. doi:10.1371/journal.pone.0042539

    Article  Google Scholar 

  • Gadri RB, Roth JR, Montie TC, Kelly-Wintenberg K, Tsai PPY, Helfritch DJ, Feldman P, Sherman DM, Karakaya F, Chen Z (2000) Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). UTK plasma sterilization team. Surf Coat Technol 131(1–3):528–541

    Google Scholar 

  • Geyter ND, Morent R, Van Vlierberghe S, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E (2009) Deposition of polymethyl methacrylate on polypropylene substrates using an atmospheric pressure dielectric barrier discharge. In: Coatings Science International 2008. Prog Org Coat 64(2–3):230–237

    Google Scholar 

  • Geyter N, Dubruel P, Morent R, Leys C (2014) Plasma assisted surface modification of polymeric biomaterials. In: Chu PK, Lu X (eds) Low temperature plasma technology: Methods and applications. CRC Press, Florida, pp 401–418. ISBN 13:978-1-4665-0991-7

    Google Scholar 

  • Gogolewski S, Varlet PM, Dillon JG (1996) Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. J Biomed Mater Res 32:227–235

    Article  Google Scholar 

  • Gomathi N, Sureshkumar A, Neogi S (2008) RF plasma-treated polymers for biomedical applications. Curr Sci 94(11):1478–1496

    Google Scholar 

  • Gomathi N, Rajasekar R, Babu RR, Mishra D, Neogi S (2012) Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification. Mater Sci Eng, C 32(7):1767–1778

    Article  Google Scholar 

  • Goodman SL, Tweden KS, Albrecht RM (1996) Platelet interaction with pyrolytic carbon heart-valve leaflets. J Biomed Mater Res 32(2):249–258

    Article  Google Scholar 

  • Griesser HJ, Chatelier RC, Gengenbach TR, Johnson G, Steele JG (1994) Growth of human cells on plasma polymers: putative role of amine and amide groups. J Biomater Sci Polym Ed 5(6):531–554

    Article  Google Scholar 

  • Gristina R, D’Aloia E, Senesi GS, Milella A, Nardulli M, Sardella E, Favia P, d’Agostino R (2008) Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. J Biomed Mater Res B: Appl Biomater 88B(1):139–149

    Google Scholar 

  • Gubala V, Le NCH, Gandhiraman RP, Coyle C, Daniels S, Williams DE (2010) Functionalization of cyclo-olefin polymer substrates by plasma oxidation: Stable film containing carboxylic acid groups for capturing biorecognition elements. Colloids Surf, B 8:544–548

    Article  Google Scholar 

  • Gupta B, Hilborn J, Hollenstein C, Plummer CJG, Houriet R, Xanthopoulos N (2000) Surface modification of polyester films by RF plasma. J Appl Polym Sci 78(5):1083–1091

    Article  Google Scholar 

  • Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23:863–871

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Guschl P, Hicks R, MacDavid S (2008) Atmospheric oxygen-helium plasma surface modification of medical plastics. In: Plasma Science, 2008. ICOPS 2008. IEEE 35th international conference on plasma science, Karlsruhe 2008, pp 1–1. doi:10.1109/PLASMA.2008.4590932

  • Ha SW, Hauert R, Ernst KH, Wintermantel E (1997) Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surf Coat Technol 96(2–3):293–299

    Article  Google Scholar 

  • Hagiwara K, Hasebe T, Hotta A (2013) Effects of plasma treatments on the controlled drug release from poly(ethylene-co-vinyl acetate). Surf Coat Technol 216:318–323

    Article  Google Scholar 

  • Hamerli P, Weigel T, Groth T, Paul D (2003) Surface properties of and cell adhesion onto allylamine-plasma coated poly ethylene terephtalate membranes. Biomaterials 24:3989–3999

    Article  Google Scholar 

  • Harper JME, Cuomo JJ, Gambino RJ, Kaufman HR (1984) In Auciello O, Kelly R (eds) Ion bombardment modification of surfaces: fundamentals and applications. Elsevier, Amsterdam, pp 127–162

    Google Scholar 

  • Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25(18):4135–4148

    Article  Google Scholar 

  • Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19(16):1419–1423

    Article  Google Scholar 

  • Herbert T (2009) In: Shishu R (ed) Plasma technologies for textiles. Cambridge, Woodhead publications, ISBN: 9781845690731

    Google Scholar 

  • Heyse P, Roeffaers MBJ, Paulussen S, Hofkens J, Jacobs PA, Sels BF (2008) Protein immobilization using atmospheric-pressure dielectric-barrier discharges: a route to a straightforward manufacture of bioactive films. Plasma Processes Polym 5(2):186–191

    Article  Google Scholar 

  • Hill D (1998) Design engineering of biomaterials for medical devices. Wiley-VCHISBN 0-471-96708-4, p 480

    Google Scholar 

  • Hollahan JR, Bell AT (1984) Techniques and applications of plasma chemistry. Wiley, New York

    Google Scholar 

  • Holy CE, Cheng C, Davies JE, Shoichet MS (2001) Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials 22(1):25–31

    Article  Google Scholar 

  • Hopwood J (1992) Review of inductively coupled plasmas for plasma processing. Plasma Sources Sci Technol 1(2):109–116

    Article  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: From mechanism to control. Biochem Eng J 48(3):424–434

    Article  Google Scholar 

  • Hsu S, Lin CH, Tseng CS (2012) Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication 4(015002):1–13. doi:10.1088/1758-5082/4/1/015002

    Google Scholar 

  • Hsu S, Chen W (2000) Improved cell adhesion by plasma-induced grafting of l-lactide onto polyurethane surface. Biomaterials 21(4):359–367

    Article  Google Scholar 

  • Huang N, Yang P, Chen X, Leng YX, Zeng XL, Jun GJ, Zheng ZH, Zhang F, Chen YR, Liu XH (1998) Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 19(7–9):771–776

    Google Scholar 

  • Inoue M, Suzuki Y, Takagi T (1997) Review of ion engineering center and related projects in ion engineering research institute. In: Materials synthesis and modification by ion and/or laser beams. Nucl Instr Meth Phys Res B 121(1–4):1–6

    Google Scholar 

  • Intranuovo F, Sardella E, Gristina R, Nardulli M, White L, Howard D, Shakesheff KM, Alexander MR, Favia P (2011) PE-CVD processes improve cell affinity of polymer scaffolds for tissue engineering. Surf Coat Technol 205:S548–S551

    Article  Google Scholar 

  • Ito Y (1999) Surface micro patterning to regulate cell functions. Biomaterials 20(23–24):2333–2342

    Article  Google Scholar 

  • Iyer R, Lehnert BE (2002) Low dose, low-LET ionizing radiation-induced radio adaptation and associated early responses in unirradiated cells. Mutat Res Fundam Mol Mech Mutagen 503(1–2):1–9

    Article  Google Scholar 

  • Janda M, Martisovits V, Machala Z (2011) Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sources Sci Technol 20:035015. doi:10.1088/0963-0252/20/3/035015

    Article  Google Scholar 

  • Jansen B, Kohnen W (1995) Prevention of biofilm formation by polymer modification. J Ind Microbiol 15(4):391–396

    Article  Google Scholar 

  • Jayagopal A, Stone GP, Haselton FR (2008) Light-guided surface engineering for biomedical applications. Bioconjugate Chemistry 19(3):792–796

    Article  Google Scholar 

  • Jiao Y, Xu J, Zhou C (2012) Effect of ammonia plasma treatment on the properties and cytocompatibility of a Poly (L-Lactic Acid) film surface. J Biomater Sci Polym Ed 23(6):763–777

    Article  Google Scholar 

  • Joh HM, Kim SJ, Chung TH, Leem SH (2012) Reactive oxygen species-related plasma effects on the apoptosis of human bladder cancer cells in atmospheric pressure pulsed plasma jets. Appl Phys Lett 101(5):053703

    Article  Google Scholar 

  • Kalghatgi S, Friedman G, Fridman A, Clyne AM (2010) Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng 38(3):748–757

    Article  Google Scholar 

  • Kaczmarek H, Kowalonek J, Szalla A, Sionkowska A (2002) Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf Sci 507–510:883–888

    Article  Google Scholar 

  • Kang MS, Chun B, Kim SS (2001) Surface modification of polypropylene membrane by low-temperature plasma treatment. J Appl Polym Sci 81(6):1555–1566

    Article  Google Scholar 

  • Kapur R, Spargo BJ, Chen MS, Calvert JM, Rudolph AS (1996) Fabrication and selective surface modification of 3-dimensionally textured biomedical polymers from etched silicon substrates. J Biomed Mater Res 33(4):205–216

    Article  Google Scholar 

  • Karakecili AG, Demirtas TT, Satriano C, Gümüsderelioglu M, Marletta G (2007) Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures. J Biosci Bioeng 104(1):69–77

    Article  Google Scholar 

  • Katsikogianni M, Amanatides E, Mataras D, Missirlis YF (2008) Staphylococcus epidermidis adhesion to He, He/O2 plasma treated PET films and aged materials: Contributions of surface free energy and shear rate. Colloids Surf, B 65(2):257–268

    Article  Google Scholar 

  • Khorasani MT, Mirzadeh H, Irani S (2008) Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion. Radiat Phys Chem 77(3):280–287

    Article  Google Scholar 

  • Kim DB, Rhee JK, Gweon B, Moon SY, Choe W (2007) Comparative study of atmospheric low pressure and radio frequency microjet plasmas produced in a single electrode configuration. Appl Phys Lett 91:151502

    Article  Google Scholar 

  • Kim JS, Kim YK, Lee KH (2004) Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene-vinyl acetate/polyurethane composites. J Colloid Interface Sci 271(1):187–191

    Article  Google Scholar 

  • Kim YJ, Kang IK, Huh MW, Yoon SC (2000) Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 21(2):121–130

    Article  Google Scholar 

  • Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ (2015) Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg 97(17):1386–1397

    Article  Google Scholar 

  • Ko YM, Lee K, Kim BH (2012) Bone like apatite formation on modified Ti surfaces with COOH, NH2, and OH functional groups by plasma polymerization. In: The 3rd international conference on microelectronics and plasma technology (ICMAP) 2011. Thin Solid Films 521:128–131

    Google Scholar 

  • Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem 71(10):1819–1828

    Article  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: Their history, discharge physics and industrial applications. Plasma Chem Plasma Process 23(1):1–46

    Article  Google Scholar 

  • Korachi M, Gurol C, Aslan N (2010) Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J Electrostat 68(6):508–512

    Article  Google Scholar 

  • Kumar DS, Banji D, Madhavi B, Bodanapu V, Dondapati S, Sri AP (2009) Nanostructured porous silicon—a novel biomaterials for drug delivery. Int J Pharm Pharm Sci 1(2):8–16

    Google Scholar 

  • Kumar V, Jolivalt C, Pulpytel J, Jafari R, Arefi-Khonsari F (2013) Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J Biomed Mater Res, Part A 101A(4):1121–1132

    Article  Google Scholar 

  • Kuzuya M, Sasai Y, Yamauchi Y, Kondo S (2008) Pharmaceutical and biomedical engineering by plasma techniques. J Photopolym Sci Technol 21(6):785–798

    Article  Google Scholar 

  • Kwok CS, Horbett TA, Ratner BD (1999) Design of infection—resistant antibiotic-releasing polymers II. Controlled release of antibiotics through a plasma deposited thin film barrier. J Controlled Release 62:301–311

    Article  Google Scholar 

  • Laroussi M (2005) Low temperature plasma based sterilization: overview and state-of-the-art. Plasma Processes Polym 2(5):391–400

    Article  Google Scholar 

  • Laroussi M, Akan T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Processes Polym 4(9):777–788

    Article  Google Scholar 

  • Lee J, Hong J, Pearton S (1996) Etching of InP at ≳1 μm/min in Cl2/Ar plasma chemistries. Appl Phys Lett 68(6):847–849

    Article  Google Scholar 

  • Lee EH, Rao GR, Lewis MB, Mansur LK (1994) Effects of electronic and recoil processes in polymers during ion implantation. J Mater Res 9(4):1043–1050

    Article  Google Scholar 

  • Lee JS, Kaibara M, Iwaki M, Sasabe I, Suzuki Y, Kusakabe M (1993) Selective adhesion and proliferation of cells on ion-implanted polymer domains. Biomaterials 14(12):958–960

    Article  Google Scholar 

  • Lee JH, Kwon JS, Om JY, Kim YH, Choi EH, Kim KM, Kim KN (2014) Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. Jpn J Appl Phys 53:086202

    Article  Google Scholar 

  • Lee KJ, Kim SM, Ho BJ, Kim KT, Kim GC, Park GY (2011) biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Jpn J Appl Phys 50:08JF01

    Google Scholar 

  • Leeuwenburgh SCG, Malda J, Rouwkema J, Kirkpatrick CJ (2008) Trends in biomaterials research: an analysis of the scientific programme of the World Biomaterials Congress 2008. Biomaterials 29:3047–3052

    Article  Google Scholar 

  • Leng YX, Yang P, Chen JY, Sun H, Wang J, Wang GJ, Huang N, Tian XB, Chu PK (2001a) Fabrication of Ti–O/Ti–N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation. Surf Coat Technol 138(2–3):296–300

    Article  Google Scholar 

  • Leng WH, Zhang Z, Cheng SA, Zhang JQ, Nan C (2001b) Estimation of photoelectrocatalytic activity of titanium oxide film electrodes by AC impedance. Chin Chem Lett 12:1019

    Google Scholar 

  • Lerouge S, Fozza AC, Wertheimer MR, Marchand R, Yahia LH (2000a) Sterilization by low-pressure plasma: the role of vacuum-ultraviolet radiation. Plasmas Polym 5(1):31–46

    Article  Google Scholar 

  • Lerouge S, Guignot C, Tabrizian M, Ferrier D, Yagoubi N, Yahia LH (2000b) Plasma-based sterilization: Effect on surface and bulk properties and hydrolytic stability of reprocessed polyurethane electrophysiology catheters. J Biomed Mater Res 52(4):774–782

    Article  Google Scholar 

  • Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia LH (2000c) Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J Biomed Mater Res 51(1):128–135

    Article  Google Scholar 

  • Levif P, Séguin J, Moisan M, Soum-Glaude A, Barbeau J (2011) Packaging materials for plasma sterilization with the flowing afterglow of an N2–O2 discharge: damage assessment and inactivation efficiency of enclosed bacterial spores. J Phys D: Appl Phys 44(40) 405201:13 pp

    Google Scholar 

  • Lhoest JB, Detrait E, Dewez JL, den Bosch Van, de Aguilar P, Bertrand P (1996) A new plasma-based method to promote cell adhesion on micrometric tracks on polystyrene substrates. J Biomater Sci Polym Ed 7(12):1039–1054

    Article  Google Scholar 

  • Li R, Chen JR (2006) Studies on wettability of medical poly(vinyl chloride) by remote argon plasma. Appl Surf Sci 252(14):5076–5082

    Article  Google Scholar 

  • Li YH, Huang YD (2007) Engineering the study of collagen immobilization on polyurethane by oxygen plasma treatment to enhance cell adhesion and growth. In: Proceedings of the fifth Asian-European international conference on plasma surface engineering-AEPSE 2005 proceedings of the fifth asian-european international conference on plasma surface. Surf Coat Technol 201(9–11):5124–5127

    Google Scholar 

  • Liefeith K, Sauberlich S, Frant M, Klee D, Richter EJ, Hocker H, Spiekermann H (1998) Characterization of the properties of differently modified titanium surfaces for dental implantology. 1: Methods for surface analysis. Biomedical technology. Biomed Eng 43(11):330–335

    Article  Google Scholar 

  • Liu JH, Liu XY, Hu K, Liu DW, Lu XP, Iza F, Kong MG (2011) Plasma plume propagation characteristics of pulsed radio frequency plasma. Appl Phys Lett 98(15):151502

    Article  Google Scholar 

  • Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621–1639

    Article  Google Scholar 

  • Lupu AR, Georgescu N (2010) Cold atmospheric plasma jet effects on V79-4 cells. Roum Arch Microbiol Immunol 69(2):67–74

    Google Scholar 

  • Majani R, Zelzer M, Gadegaard N, Rose FR, Alexander MR (2010) Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer. Biomaterials 31(26):6764–6771

    Article  Google Scholar 

  • Mansour MM, E-Sayed NM, Farag OF, Elghazaly MH (2013) Effect of He and Ar addition on N2 glow discharge characteristics and plasma diagnostics. Arab J Nucl Sci Appl 46(1):116–125

    Google Scholar 

  • Marlowe DA (1997) Biocompatibility: assessment of medical devices and materials In: Braybrook JH (ed) Biomaterials sciences and engineering. Wiley, p 246

    Google Scholar 

  • Marciano de Paul JA, Realino de Paul J, Pimenta FC, Rezende MH, Bara MTF (2009) Antimicrobial activity of the crude ethanol extract from Pimentapseudocaryophyllus. Pharm Biology 47(10):987–993

    Google Scholar 

  • Markets and Markets (Dec. 2015; report code: BT 1556) http://www.marketsandmarkets.com/PressReleases/global-biomaterials.asp. Accessed 02 Sept 2016

  • Martin Y, Boutin D, Vermette P (2007) Study of the effect of process parameters for n-heptylamine plasma polymerization on final layer properties. Thin Solid Films 515(17):6844–6852

    Google Scholar 

  • Mattox DM (1989) Particle bombardment effects on thin-film deposition: A review. J Vac Sci Technol, A 7:1105–1114

    Article  Google Scholar 

  • Matthes R, Koban I, Bender C, Masur K, Kindel E, Weltmann KD, Kocher T, Kramer A, Hübner NO (2013) Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas Aeruginosa and Staphylococcus Epidermidis. Plasma Processes Polym 10(2):161–166

    Article  Google Scholar 

  • Mckellop HA, Rostlund TV (1990) The wear behavior of ion-implanted Ti-6Al-4V against UHMW polyethylene. J Biomed Mater Res 24(11):1413–1425

    Article  Google Scholar 

  • Mendhe P, Arolkar GA, Shukla SR, Deshmukh RR (2016) Low temperature plasma processing for the enhancement of surface properties and dyeability of wool fabric. J Appl Polym Sci 133(12):43097(1–8)

    Google Scholar 

  • Miao H, Yun G (2011) The sterilization of Escherichia coli by dielectric-barrier discharge plasma at atmospheric pressure. Appl Surf Sci 257(16):7065–7070

    Article  Google Scholar 

  • Mitchell SA, Davidson MR, Emmison N, Bradley RH (2004) Isopropyl alcohol plasma modification of polystyrene surfaces to influence cell attachment behaviour. Surf Sci 561:110–120

    Article  Google Scholar 

  • Moreira AJ, Mansano RD, Pinto TA, Rua R, Zambon LD, Da Silva MV, Verdonck PB (2004) Sterilization by oxygen plasma. Appl Surf Sci 235:151–155

    Article  Google Scholar 

  • Morra M, Occhiello E, Garbassi F (1989) Contact angle hysteresis on oxygen plasma treated polypropylene surfaces. J Colloid Interface Sci 504:132

    Google Scholar 

  • Mow VC, Soslowsky LJ (1991) Friction, lubrication, and wear- of diarthrodial joints. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Raven Press Ltd., New York, pp 245–292

    Google Scholar 

  • Moy E, Lin FYH, Vogtle JW, Policova Z, Neumann AW (1994) Contact angle studies of the surface properties of covalently bonded poly-l-lysine to surfaces treated by glow-discharge. Colloid Polym Sci 272(10):1245–1251

    Article  Google Scholar 

  • Mrad O, Saloum S, Al-Mariri A (2013) Effect of a new low pressure SF6 plasma sterilization system on polymeric devices. Vacuum 88:11–16

    Article  Google Scholar 

  • Müller WU, Streffer C (1991) biological indicators for radiation damage. Int J Radiat Biol 59(4):863–873

    Article  Google Scholar 

  • Mundo RD, Gristina R, Sardella E, Intranuovo F, Nardulli M, Milella A, Palumbo F, d’Agostino R, Favia P (2010) Micro/Nano scale structuring of cell-culture substrates with fluorocarbon plasmas. Plasma Processes Polym 7:212–223

    Google Scholar 

  • Mustard JF, Packham MA (1975) The role of blood and platelets in atherosclerosis and the complications of atherosclerosis. Thrombosis et Diathesis Haemorrhagica 33(3):444–456

    Google Scholar 

  • Mwale F, Wang HT, Nelea V, Luo L, Antoniou J, Wertheimer MR (2006) The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials 27:2258–2264

    Article  Google Scholar 

  • Myung SW, Ko YM, Hoon KB (2014) Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques. Jpn J Appl Phys 53:11RB01

    Google Scholar 

  • Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90

    Google Scholar 

  • Nandakumar A, Tahmasebi Birgani Z, Santos D, Mentink A, Auffermann N, van der Werf K, Bennink M, Moroni L, van Blitterswijk C, Habibovic P (2012) Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. Biofabrication 5(1):015006

    Article  Google Scholar 

  • Nasonova E, Gudowska-Nowak E, Ritter S, Kraft G (2001) Analysis of Ar-ion and X-ray-induced chromatin breakage and repair in V79 plateau-phase cells by the premature chromosome condensation technique. Int J Radiat Biol 77(1):59–70

    Article  Google Scholar 

  • Natarajan AT (2001) Fluorescence in situ hybridization (FISH) in genetic toxicology. J Environ Pathol Toxicol Oncol 20(4):293–299

    Article  Google Scholar 

  • Neděla O, Slepičk P, Kolská Z, Kasálková NS, Sajdl P, Veselý M, Švorčík V (2016) Functionalized polyethylene naphthalate for cytocompatibility improvement. React Funct Polym 100:44–52

    Article  Google Scholar 

  • Noeske M, Jost D, Silke S, Uwe L (2004) Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion. Int J Adhes Adhes 24:171–177

    Article  Google Scholar 

  • Nunez MI, McMillan TJ, Valenzuela MT, Ruiz de Almodovar JM, Pedraza V (1996) Relationship between DNA damage, rejoining and cell killing by radiation in mammalian cells. Radiother Oncol (1996) 39(2):155–165

    Google Scholar 

  • Ohl A, Schroder K (1999) Plasma-induced chemical micro patterning for cell culturing applications: a brief review. Surf Coat Technol 116–119:820–830

    Article  Google Scholar 

  • Okada T, Ikada Y (1995) Surface modification of silicone for percutaneous implantation. J Biomater Sci Polym Ed 7(2):171–180

    Article  Google Scholar 

  • Okada T, Yoshito I (1992) In vitro and in vivo digestion of collagen covalently immobilized onto the silicone surface. J Biomed Mater Res 26(12):1569–1581

    Article  Google Scholar 

  • Ou J, Wang J, Zhang D, Zhang P, Liu S, Yan P, Liu B, Yang S (2010) Fabrication and biocompatibility investigation of TiO2 films on the polymer substrates obtained via a novel and versatile route. Colloids Surf, B 76:123–127

    Article  Google Scholar 

  • Paisoonsin S, Pornsunthorntawee O, Rujiravanit R (2013) Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl Surf Sci 273:824–835

    Article  Google Scholar 

  • Pandiayaraj KN, Selvarajan V, Rhee YH, Kim HW, Pavesec M (2010) Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity. Colloids Surf, B 79:53–60

    Article  Google Scholar 

  • Pandiyaraj KN, RamKumar MC, Kumar AA, Padmanabhan PVA, Deshmukh RR, Bendavid A, Su PG, Sachdev A, Gopinath P (2016a) Cold atmospheric pressure (CAP) plasma assisted tailoring of LDPE film surfaces for enhancement of adhesive and cytocompatible properties: Influence of operating parameters. Vacuum 130:34–47

    Article  Google Scholar 

  • Pandiyaraj KN, Ferraria AM, Bothelo de Regob AM, Deshmukh RR, Sud PG, Halleluyahe M, Ahmad SH (2015) Low-pressure enhancement immobilization of chitosan on low density polyethylene for bio-medical applications. Appl Surf Sci 328:1–12

    Article  Google Scholar 

  • Pandiyaraj KN, Selvarajan V, Rhee YH, Kim HW, Shah SI (2009) Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties. Mater Sci Eng, C 29:796–805

    Article  Google Scholar 

  • Pandiyaraj KN, Selvarajan V, Rhee YH, Kim HW (2016e) Characterization and In Vitro Hemocompatibility of Polyethylene Terephthalate Film Surfaces Modified by DC Glow Discharge Plasma and Graft Polymerization. J Appl Polym Sci. doi:10.1002/app.29600 (in press)

  • Pandiyaraj KN, Deshmukh RR, Ruzybayev I, Shah SI, Su PG, Halleluyahe M Jr, Ahmad SH (2014a) Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE). Appl Surf Sci 307:109–119

    Article  Google Scholar 

  • Pandiyaraj KN, RamKumar MC, Arun Kumar A, Padmanabhan PVA, Deshmukh RR, Bahd M, Shah SI, Su PG, Halleluyahe M Jr, Ahmad SH (2016c) Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity. Appl Surf Sci 370:545–556

    Article  Google Scholar 

  • Pandiyaraj KN, Selvarajan V (2008) Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 199(1–3):130–139

    Article  Google Scholar 

  • Pandiyaraj KN, Kumar AA, Ram Kumar MC, Deshmukh RR, Bendavid A, Su PG, Kumar SU, Gopinath P (2016a) Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Curr Appl Phys 16:784e792

    Google Scholar 

  • Pandiyaraj KN, Deshmukh RR, ShreeRam B, Mahendiran R (2014b) Improvement of surface and biocompatible properties of flexible transparent nano TiO2 films using glow discharge plasma. J Nano Sci Nano Technol 2(4):436–441

    Google Scholar 

  • Pandiyaraj KN, ArunKumar A, Ramkumar MC, Sachdev A, Gopinath P, Cools P, DeGeyter N, Morent R, Deshmukh RR, Hegde P, Han C, Nadagouda MN (2016d) Influence of non-thermal TiCl4/Ar + O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility. Mater Sci Eng C 62:908–918

    Article  Google Scholar 

  • Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Jiménez A, Bourke P, Cullen PJ (2014) Surface, thermal and antimicrobial release properties of plasma-treated zein films. J Renew Mater 1(8):77–84

    Article  Google Scholar 

  • Pappas DD, Bujanda AA, Orlicki JA, Jensen RE (2008) Chemical and morphological modification of polymers under a helium-oxygen dielectric barrier discharge. In: Proceedings of the 35th international conference on metallurgical coatings and thin films. Surf Coat Technol 203(5–7):830–834

    Google Scholar 

  • Park BJ, Lee D, Park JC, Lee IS, Lee KY, Hyun S, Chun MS, Chung KH (2003) Sterilization using a microwave-induced argon plasma system at atmospheric pressure. AIP. Phys Plasmas 10(11):4539–4544

    Article  Google Scholar 

  • Park JB, Lakes RS (1992) Biomaterials: An Introduction, 2nd edn. Plenum Press, New York. ISBN 978-0-387-37879-4

    Book  Google Scholar 

  • Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21(4):043001

    Google Scholar 

  • Pezzatini S, Morbidelli Gristina R, Favia P, Ziche M (2008) A nanoscale fluorocarbon coating on PET surfaces improves the adhesion and growth of cultured coronary endothelial cells. Nanotechnology 19:275101

    Article  Google Scholar 

  • Picraux ST, Pope LE (1984) Tailored surface modification by ion implantation and laser treatment. Science 226(4675):615–622

    Article  Google Scholar 

  • Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH (2010) Poly (dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloids Surf, B 8(1):20–26

    Article  Google Scholar 

  • Ponte GD, Sardella E, Fanelli F, Van Hoeck A, d’Agostino R, Paulussen S, Favia P (2011) Atmospheric pressure plasma deposition of organic films of biomedical interest. Surf Coat Technol 205:S525–S528

    Article  Google Scholar 

  • Radu CD, Kiekens P, Verschuren J (2000) Surface modification of textiles by plasma treatments. In: Pastore CM, Kiekens P (eds) Surface characteristics of fibres and textiles, surfactant series, vol 94, Marcel Dekker, NY, pp 203–218

    Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials Science: An introduction to materials in medicine, vol. 2, Academic Press, New York, Elsevier Academic Press, pp 105–107, ISBN – 0-12-582463-7

    Google Scholar 

  • Ratner BD (1993) Plasma deposition for biomedical applications: A brief review. J Biomater Sci Polym Ed 4(1):3–11

    Article  Google Scholar 

  • Renò F, D’Angelo D, Gottardi G, Rizzi M, Aragno D, Piacenza G, Cartasegna F, Biasizzo M, Trotta F, Cannas M (2012) Atmospheric pressure plasma surface modification of Poly(D, L-lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation. Plasma Processes Polym 9(5):491–502

    Article  Google Scholar 

  • Rhee JK, Kim DB, Moon SY, Choe W (2007) Change of the argon-based atmospheric pressure large area plasma characteristics by the helium and oxygen gas mixing. The Third International Symposium on Dry Process (DPS 2005). Thin Solid Films 515(12):4909–4912

    Article  Google Scholar 

  • Rieu J, Pichat A, Rabbe LM, Rambert A, Chabrol C, Robelet M (1991) Ion implantation effects on friction and wear of joint prosthesis materials. Biomaterials 12(2):139–143

    Article  Google Scholar 

  • Rimpelov S, Peterková L, Kasálková NS, Slepička P, Švorčík V, Ruml T (2014) Surface modification of biodegradable Poly(L-Lactic Acid) by argon plasma: fibroblasts and keratinocytes in the spotlight. Plasma Processes Polym 11(11):1057–1067

    Article  Google Scholar 

  • Ritter S, Nasonova E, Scholz M, Kraft-Weyrather W, Kraft G (1996) Comparison of chromosomal damage induced by X-rays and Ar ions with an LET of 1840 keV/micrometer in G1 V79 cells. Int J Radiat Biol 69(2):155–166

    Article  Google Scholar 

  • Roth JR (2001a) ‘Industrial plasma engineering’ Vol. 1, January 1, 1995 by CRC Press, ISBN 9780750303170—CAT# IP376, IOP, Bristol

    Google Scholar 

  • Roth JR (2001b) ‘Industrial plasma engineering’ Vol. 2, August 25, 2001 by CRC Press, ISBN 9780750305440—CAT# IP375, IOP, Bristol

    Google Scholar 

  • Roth JR, Sherman DM, Gadri RB, Karakaya F, Chen Z, Montie TC, Winterberg KK (2000) A remote exposure for plasma processing and sterilization by plasma active species at one atmosphere. IEEE Trans Plasma Sci 28:56–63

    Article  Google Scholar 

  • Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8–9):2785–2792

    Article  Google Scholar 

  • Rudd ME, DuBois RD, Toburen LH, Ratcliffe CA, Goffe TV (1983) Cross sections for ionization of gases by 5-4000-keV protons and for electron capture by 5-150-keV protons. Phys Rev A 28:3244–3257

    Google Scholar 

  • Rutala WA, Gergen MF, Weber DJ (1998) Comparative evaluation of the sporicidal activity of new low-temperature sterilization technologies: Ethylene oxide, 2 plasma sterilization systems, and liquid peracetic acid. Am J Infect Control 26(4):393–398

    Article  Google Scholar 

  • Sanborn SL, Murugesan G, Marchant RE, Kottke-Marchant K (2002) Endothelial cell formation of focal adhesions on hydrophilic plasma polymers. Biomaterials 23:1–8

    Article  Google Scholar 

  • Sanchis MR, Blanes V, Blanes M, Garcia D, Balart R (2006) Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur Polymer J 42:1558–1568

    Article  Google Scholar 

  • Sarani A, Nikiforov AY, Geyter ND, Morent R, Leys C (2011) Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl Surf Sci 257(20):8737–8741

    Article  Google Scholar 

  • Sarapirom S, Lee JS, Jin SB, Song DH, Yu LD, Han JG, Chaiwong C (2013) Wettability effect of PECVD-SiOx films on Poly(lactic acid) induced by oxygen plasma on protein adsorption and cell attachment. J Phys: Conf Ser 423:012042

    Google Scholar 

  • Sarra-Bournet C, Turgeon S, Mantovani D, Laroche G (2006) A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications. J Phys D Appl Phys 39(16):3461–3469

    Article  Google Scholar 

  • Scholz M, Ritter S, Kraft G (1998) Analysis of chromosome damage based on the time course of aberrations. Int J Radiat Biol 74(3):325–331

    Article  Google Scholar 

  • Schnabelrauch M, Wyrwa R, Reb H, Bergemann C, Finke B, Schlosser M, Walschus U, Lucke S, Weltmann KD, Nebe JB (2014) Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties. Int J Polymer Sci 439784:1–12

    Article  Google Scholar 

  • Schröder K, Finke B, Polak M, Lüthen F, Nebe B, Rychly J, Bader R, Lukowski G, Walschus U, Schlosser M, Ohl A, Weltmann KD (2010) Gas-discharge plasma-assisted functionalization of titanium implant surfaces. Mater Sci Forum 638–642:700–705

    Article  Google Scholar 

  • Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694

    Article  Google Scholar 

  • Seifert B, Romaniuk P, Groth T (1997) Covalent immobilization of hirudin improves the haemocompatibility of polylactide—polyglycolide in vitro. Biomaterials 18(22):1495–1502

    Article  Google Scholar 

  • Selwyn GS, Herrmann HW, Park J, Henins I (2001) Materials processing using an atmospheric pressure, RF-generated plasma source. Contrib Plasma Phys 41(6):610–619

    Article  Google Scholar 

  • Senesi GS, D’Aloia E, Gristina R, Favia P, d’Agostino R (2007) Surface characterization of plasma deposited nano-structured fluorocarbon coatings for promoting in vitro cell growth. Surf Sci 601:019–1025

    Google Scholar 

  • Sensenig R, Kalghatgi S, Cerchar E, Fridman G, Shereshevsky A, Torabi B, Arjunan KP, Podolsky E, Fridman A, Friedman G, Azizkhan-Clifford J, Brooks AD (2010) Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng 39(2):674–687

    Article  Google Scholar 

  • Shen H, Hu X, Yang F, Bei J, Wang S (2007) Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials 28:4219–4230

    Article  Google Scholar 

  • Shijian L, Van O, Wim J (2002) Surface modification of textile fibres for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol 16(13):1715–1735

    Article  Google Scholar 

  • Sioshansi P, Tobin EJ (1996) Surface treatment of biomaterials by ion beam processes. Surf Coat Technol 83:175–182

    Article  Google Scholar 

  • Sodhi RNS (1996) Application of surface analytical and modification techniques to biomaterials research. J Electron Spectrosc Relat Phenom 81(3):269–284

    Article  Google Scholar 

  • Song YQ, Sheng J, Wei M, Yuan XB (2000) Surface modification of polysulfone membranes by low-temperature plasma–graft poly (ethylene glycol) onto polysulfone membranes. J Appl Polym Sci 78(5):979–985

    Article  Google Scholar 

  • Sprang N, Theirich D, Engemann (1995) Plasma and ion beam surface treatment of polyethylene. In: Fourth international conference on plasma surface engineering part 2. Surf Coat Technol 74–75(2):689–695

    Google Scholar 

  • Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Reitz G, Moeller R (2013) Utilization of low pressure plasma to inactivate bacterial spore on stainless steel screws. Astrobiology 13(7):597–606

    Article  Google Scholar 

  • Steele JG, Gengenbach TR, Johnson G, Mcfarland C, Dalton BA, Underwood PA, Chatelier RC, Griesser HJ (1995) In: Proceedings of the proteins at interfaces 2nd ACS symposium series 602, vol 436 American Chemical Society, Washington, DC

    Google Scholar 

  • Steele JG, Johnson G, Mcfarland C, Dalton BA, Gengenbach TR, Chatelier RC, Underwood PA, Griesser HJ (1994) Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen- and nitrogen-containing surfaces made by radiofrequency plasmas. J Biomater Sci Polymer Ed 6(6):511–532

    Article  Google Scholar 

  • Steffen HJ, Schmidt J, Gonzalez-ElipeA (2000) Biocompatible surfaces by immobilization of heparin on diamond-like carbon films deposited on various substrates. Surf Interface Anal 29:386–391

    Google Scholar 

  • Su W, Wang S, Wang X, Fu X, Weng J (2010) Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf Coat Technol 205(2):465–469

    Article  Google Scholar 

  • Suzuki Y, Kusakabe M, Akiba H, Kusakabe K, Iwaki M (1990) In vivo evaluation of antithrombogenicity for ion implanted silicone rubber using indium-tropolone-platelets. Japan J Artif Organs 19:1092–1095

    Google Scholar 

  • Suzuki Y, Kusakabe M, Iwaki M, Suzuki M (1988) Surface modification of silicone rubber by ion implantation. Nucl Instrum Methods Phys Res, Sect B 32(1–4):120–124

    Article  Google Scholar 

  • Svorcík V, Arenholz E, Rybka V, Ochsner R, Ryssel H (1998) AFM surface investigation of polyethylene modified by ion bombardment. Nucl Instrum Methods Phys Res, Sect B 142(3):349–354

    Article  Google Scholar 

  • Svorcík V, Rybka V, Hnatowicz V, Smetana K (1997) Structure and biocompatibility of ion beam modified polyethylene. J Mater Sci Mater Med 8(7):435–440

    Article  Google Scholar 

  • Szycher M, Sioshansi P (1990) Frisch EE (1990) Biomaterials for the 1990s: polyurethanes, silicones and ion beam modification techniques (Part II). Spire Corporation, Patriots Park, Bedford

    Google Scholar 

  • Tanaka K, Kogoma M, Ogawa Y (2006) Fluorinated polymer coatings on PLGA microcapsules for drug delivery system using atmospheric pressure glow plasma. Thin Solid Films 506–507:159–162

    Article  Google Scholar 

  • Taucher-Scholz G, Heilmann J, Schneider M, Kraft G (1995) Detection of heavy-ion-induced DNA double-strand breaks using static-field gel electrophoresis. Radiat Environ Biophys 34(2):101–106

    Article  Google Scholar 

  • Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Spectrochim Acta Part B 61(1):2–30

    Article  Google Scholar 

  • Thelen H, Kaufmann R, Klee D, Hoecker H, Fresenius J (1995) Development and characterization of a wettable surface modified aromatic polyethersulphone using glow discharge induced HEMA-graft polymerisation. Fresenius’ J Anal Chem (3):290–296

    Google Scholar 

  • Thomas H, Denda B, Hedler M, Kasermann M, Klein C, Merten TH (1998) Textile finishing with low temperature plasma. Melliand Textiliber 79:350–352

    Google Scholar 

  • Timmons RB, Griggs (2004) Pulsed plasma polymerizations. In: Biederman H (ed) Plasma polymer films. Imperial College Press, London 217–246

    Google Scholar 

  • Timmons RB, Owens DE, Iii, Windsor JB, Khorzad RK, Susut C, Less (2011) Encapsulated particles for enteric release. US Patent App. no. PCT/US2010/035872, Pub no.WO2011146078 A1

    Google Scholar 

  • Triandafillu K, Balazs DJ, Aronsson BO, Descouts P, Tu QP, van Delden C, Mathieu HJ, Harms H (2003) Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 24:1507–1518

    Article  Google Scholar 

  • Uldall PR (1993) Surface treatment of biomaterials by ion beam processes. In: Nissenson AR, Fine RN (eds) Dialysis Therapy, 2nd edn. Hanley & Belfus, Philadelphia, PA, pp 5–10

    Google Scholar 

  • van Kooten TG, Hetty ST, Busscher HJ (2004) Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials 25:1735–1747

    Article  Google Scholar 

  • Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Le Pape A (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130(9):2185–2194

    Article  Google Scholar 

  • Vargo TG, Thompson PM, Gerenser LJ, Valentini RF, Aebischer P, Hook DJ, Gardella JA Jr (1992) Monolayer chemical lithography and characterization of fluoropolymer films. Langmuir 8(1):130–134

    Article  Google Scholar 

  • Vassal PS, Favennec L, Ballet JJ, Brasseur P (1998) Hydrogen peroxide gas plasma sterilization is effective against Cryptosporidium parvum oocysts. Am J Infect Control 26(2):136–138

    Article  Google Scholar 

  • Venkatesan T (1985) High energy ion beam modification of polymeric films. Nucl Instrum Methods Phys Res, Sect B 7–8:461–467

    Article  Google Scholar 

  • Vrekhem S Van, Cools P, Declercq H, Van Tongel A, Vercruysse C, Cornelissen M, Geyter ND, Morent R (2015) Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion. In: The 42nd international conference on metallurgical coatings and thin films. Thin Solid Films 596:256–263

    Google Scholar 

  • Walachova K, Svorcík V, Bacakova L, Hnatowicz V (2002) Colonization of ion-modified polyethylene with vascular smooth muscle cells in vitro. Biomaterials 23(14):2989–2996

    Article  Google Scholar 

  • Walsh JL, Kong MG (2007) Room-temperature atmospheric argon plasma jet sustained with sub microsecond high-voltage pulses. Appl Phys Lett 91:221502

    Article  Google Scholar 

  • Wang J, Chen JY, Yang P, Leng YW, Wan GJ, Sun H, Zhao AS, Huang N, Chu PK (2006). In vitro platelet adhesion and activation of polyethylene terephthalate modified by acetylene plasma immersion ion implantation and deposition. In: Ion beam modification of materials—proceedings of the 14th international conference on ion beam modification of materials. Nucl Instr Meth Phys Res Sect B: Beam Interact Mater Atoms 242(1–2):12–14

    Google Scholar 

  • Wang J, Pana CJ, Huang N, Sun H, Yang P, Leng YX, Chen JY, Wan GJ, Chu PK (2005) Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. In: 13th international conference on surface modification of materials by ion beams. Surf Coat Technol 196(1–3):307–311

    Google Scholar 

  • Wang P, Tan KL, Kang ET, Neoh KG (2002) Plasma-induced immobilization of poly (ethylene glycol) onto poly (vinylidene fluoride) microporous membrane. J Membr Sci 195(1):103–114

    Article  Google Scholar 

  • Washburn NR, Yamada KM, Simon CG Jr, Kennedy SB, Amis EJ (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25(7–8):1215–1224

    Article  Google Scholar 

  • Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J Phys D Appl Phys 41(19):194008

    Article  Google Scholar 

  • Welz C, Becker S, Li YF, Shimizu T, Jeon J, Schwenk-Zieger S, Thomas HM, Isbary G, Morfill GE, Harreus U, Zimmermann JL (2013) Effects of cold atmospheric plasma on mucosal tissue culture. J Phys D Appl Phys 46:045401

    Article  Google Scholar 

  • Winter J, Tresp H, Hammer MU, Iseni S, Kupsch S, Schmidt-Bleker A, Wende K, D¨unnbier M, Masur K, Weltmann KD, Reuter S (2014) Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D: Appl Phys 47(28):285401

    Google Scholar 

  • Wintermantel E, Mayer J, Blum J, Eckert KL, Luscher P, Mathey M (1996) Tissue engineering scaffolds using superstructures. Biomaterials: polymer scaffolding and hard. Tissue Eng 17(2):83–91

    Google Scholar 

  • Xu H, Deshmukh RR, Timmons RB, Kytai TN (2011) Enhanced endothelialization on surface modified Poly(l-Lactic Acid) substrates. Tissue Eng Part A 17(5–6):865–876

    Article  Google Scholar 

  • Yasuda H, Hsu T (1978) Plasma polymerization investigated by the comparison of hydrocarbons and perfluorocarbons. Surf Sci 76:232–241

    Article  Google Scholar 

  • Yasuda H (1985) Plasma polymerization. Academic Press Inc, Orlando, New York, London

    Google Scholar 

  • Yildirim ED, Besunder R, Pappas D, Allen F, Güçeri S, Sun W (2010) Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2:014109

    Article  Google Scholar 

  • Yoon NS, Lim YJ, Tahara M, Takagishi T (1996) Mechanical and dyeing properties of wool and cotton fabrics treated with low temperature plasma and enzymes. Text Res J 66:329–336

    Article  Google Scholar 

  • Yoshida S, Hagiwara K, Hasebe T, Hotta A (2013) Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf Coat Technol 233:99–107

    Article  Google Scholar 

  • Young JH (1997) New sterilization technologies In: Reichert M, Yung JH (Eds) Sterilization technology for the health care facility, Aspen Publishers, Gaithersburg, MD, pp 228–235. ISBN 0-8342-0838-5

    Google Scholar 

  • Zanini S, Muller M, Riccardi C, Orlandi M (2007) Polyethylene Glycol grafting on polypropylene membranes for anti-fouling properties. Plasma Chem Plasma Process 27:446–457

    Article  Google Scholar 

  • Zelzer M, Majani R, Bradley James W, Rose J, Felicity RA, Davies MC, Alexander MR (2008) Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29:172–184

    Article  Google Scholar 

  • Zhang W, Chu PK, Ji J, Zhang Y, Liu X, Fu RKY, Ha PCT, Yan Q (2006a) Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials 27:44–51

    Article  Google Scholar 

  • Zhang W, Chu PK, Ji J, Zhang Y, Fu RKY, Yan Q (2006b) Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 47:931–936

    Article  Google Scholar 

  • Zhao Q, Zhai GJ, Ng DHL, Zhang XZ, Chen ZQ (1999) Surface modification of Al2O3 bioceramic by NH+2 ion implantation. Biomaterials 20(6):595–599

    Article  Google Scholar 

  • Zheng Y, Xiong C, Wang Z, Li X, Zhang L (2015) A combination of CO2 laser and plasma surface modification of poly(ether ether ketone) to enhance osteoblast response. Appl Surf Sci 344:79–88

    Article  Google Scholar 

  • Zhu W, Lopez JL (2012) A DC non-thermal atmospheric-pressure plasma micro jet. Plasma Sources Sci Technol 21:034018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra R. Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Trimukhe, A.M., Pandiyaraj, K.N., Tripathi, A., Melo, J.S., Deshmukh, R.R. (2017). Plasma Surface Modification of Biomaterials for Biomedical Applications. In: Tripathi, A., Melo, J. (eds) Advances in Biomaterials for Biomedical Applications. Advanced Structured Materials, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3328-5_3

Download citation

Publish with us

Policies and ethics