Skip to main content

Graphene Metal Nanoclusters in Cutting-Edge Theranostics Nanomedicine Applications

  • Chapter
  • First Online:
Advances in Biomaterials for Biomedical Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 66))

  • 1865 Accesses

Abstract

The major breakthrough of graphene in 2004 has paved the way for various approaches to synthesize graphene and its derivatives for biomedical applications. With the interest in graphene as a cargo in drug delivery, the exploration has slowly shifted to metal-graphene materials as fluorescent probes. Metals such as Cu, Au, Fe, Ce and etc., have been incorporated into graphene for various applications such as sensing and imaging. With the success of graphene—metal nanoparticles (NPs), its more recently discovered counterpart, graphene—metal nanoclusters (NCs) has gained much interest lately. Loosely defined, NCs are a cluster of NPs with sizes of 1–20 nm with a narrow size distribution, which endows it with unique electronic properties compared to metal NPs. NCs are size-dependent fluorescent materials with good photostability. They have been largely investigated in biosensing, diagnosis and therapy applications, a term coined as theranostics. In more recent applications, graphene metal NCs were stabilized with protein biomarkers for targeted sensing of cancer cells and diseases. Smart delivery system allows diagnosis, imaging and targeted therapy simultaneously. This chapter focusses on the synthesis and biomedical applications of graphene—metal NCs with a detailed discussion on their properties and applications in the biomedical field. A brief description on the toxicity is addressed as well, together with future considerations for possible applications of graphene—metal NCs clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three-dimensional

Ag:

Silver

Au:

Gold

CT:

Computed tomography

CTAB:

Cetyltrimethylammonium bromide

CVD:

Chemical vapour deposition

D:

Diffusion coefficient

DFT:

Density functional theory

DOS:

Density of states

Dox:

Doxorubicin

Gd:

Gadolinium

GO:

Graphene oxide

HREELS:

High-resolution electron energy loss spectrometer

HRTEM:

High-resolution transmission electron microscopy

IC50 :

Half-inhibitory concentration

IONP:

Iron oxide nanoparticles

LD50 :

Lethal dose 50%

LDH:

Lactate dehydrogenase

LEED:

Low energy electron diffraction

MMP:

Metalloproteinase-9

Mn:

Manganese

MR:

Magnetic resonance

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

MUA:

Mercaptoundecanoic acid

NCs:

Nanoclusters

NIR:

Near Infrared

NOAEL:

No observed adverse effect level

NPs:

Nanoparticles

PET:

Positron emission tomography

PMA:

Phorbol myristate acetate

PM-IRAS:

Polarization modulation infrared reflection absorption spectrometer

PVP:

Polyvinyl-pyrrolidone

QUAMBO:

Quasi-atom minimal basis orbitals

RGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

RT:

Room temperature

STM:

Scanning tunneling microscopy

TEM:

Transmission electron microscopy

TOAB:

Tetraoctylammonium bromide

UHV:

Ultrahigh vacuum

UV:

Ultra-violet

XPS:

X-ray photo-electron microscopy

XRD:

X-ray diffraction

References

  • Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025

    Article  Google Scholar 

  • Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–431

    Article  Google Scholar 

  • Amidror I, Hersch RD (1999). Methods and apparatus for authentication of documents by using the intensity profile of moiré patterns. Google Patents

    Google Scholar 

  • Auwärter W, Muntwiler M, Greber T, Osterwalder J (2002) Co on h-BN/Ni (111): from island to island-chain formation and Co intercalation. Surf Sci 511:379–386

    Article  Google Scholar 

  • Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115

    Article  Google Scholar 

  • Balcioglu M, Rana M, Yigit MV (2013) Doxorubicin loading on graphene oxide, iron oxide and gold nanoparticle hybrid. J Mater Chem B 1:6187–6193

    Article  Google Scholar 

  • Bartelt N, McCarty K (2012) Graphene growth on metal surfaces. MRS Bull 37:1158–1165

    Article  Google Scholar 

  • Berko A, Szökő J, Solymosi F (2004) Effect of CO on the morphology of Pt nanoparticles supported on TiO2 (110)-(1 × n). Surf Sci 566:337–342

    Article  Google Scholar 

  • Bianco A (2013) Graphene: Safe or toxic? The two faces of the medal. Angew Chem Int Ed 52:4986–4997

    Article  Google Scholar 

  • Biela A, Watkinson M, Meier UC, Baker D, Giovannoni G, Becer CR, Krause S (2015) Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens Bioelectron 68:660–667

    Article  Google Scholar 

  • Binz SM, Hupalo M, Liu X, Wang CZ, Lu WC, Thiel PA, Ho KM, Conrad E, Tringides MC (2012) High island densities and long range repulsive interactions: Fe on epitaxial graphene. Phys Rev Lett 109:026103

    Article  Google Scholar 

  • Bo X, Ndamanisha JC, Bai J, Guo L (2010) Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 82:85–91

    Article  Google Scholar 

  • Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA (2006) Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  Google Scholar 

  • Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) Charge-transfer interaction of poly (vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295

    Article  Google Scholar 

  • Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J, Riethmüller S, Hartmann C, Möller M (2002) Oxidation-resistant gold-55 clusters. Science 297:1533–1536

    Article  Google Scholar 

  • Brihuega I, Michaelis CH, Zhang J, Bose S, Sessi V, Honolka J, Schneider MA, Enders A, Kern K (2008) Electronic decoupling and templating of Co nanocluster arrays on the boron nitride nanomesh. Surf Sci 602:L95–L99

    Article  Google Scholar 

  • Brune H (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf Sci Rep 31:125–229

    Article  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commun 801–802

    Google Scholar 

  • Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656

    Google Scholar 

  • Campbell CT (2004) The active site in nanoparticle gold catalysis. Science 306:234–235

    Article  Google Scholar 

  • Cavallin A, Pozzo M, Africh C, Baraldi A, Vesselli E, Dri C, Comelli G, Larciprete R, Lacovig P, Lizzit S (2012) Local electronic structure and density of edge and facet atoms at Rh nanoclusters self-assembled on a graphene template. ACS Nano 6:3034–3043

    Article  Google Scholar 

  • Chan TL, Yao Y, Wang C, Lu W, Li J, Qian X, Yip S, Ho K (2007) Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations. Physical Review B 76:205119

    Article  Google Scholar 

  • Chang G, Shu H, Huang Q, Oyama M, Ji K, Liu X, He Y (2015) Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim Acta 157:149–157

    Article  Google Scholar 

  • Chella S, Kollu P, Komarala EVP, Doshi S, Saranya M, Felix S, Ramachandran R, Saravanan P, Koneru VL, Venugopal V (2015) Solvothermal synthesis of MnF2O4-graphene composite—investigation of its adsorption and antimicrobial properties. Appl Surf Sci 327:27–36

    Article  Google Scholar 

  • Chen M, Goodman D (2004) The structure of catalytically active gold on titania. Science 306:252–255

    Article  Google Scholar 

  • Chen M, Goodman D (2006a) Structure-activity relationships in supported Au catalysts. Catal Today 111:22–33

    Article  Google Scholar 

  • Chen M, Goodman DW (2006b) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746

    Article  Google Scholar 

  • Chen A, Holt Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  Google Scholar 

  • Chen W, Loh KP, Xu H, Wee A (2004) Growth of monodispersed cobalt nanoparticles on 6H–SiC (0001) honeycomb template. Appl Phys Lett 84:281–283

    Article  Google Scholar 

  • Chen XM, Lin ZJ, Chen DJ, Jia TT, Cai ZM, Wang XR, Chen X, Chen GN, Oyama M (2010) Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 25:1803–1808

    Article  Google Scholar 

  • Chen Y, Xu P, Shu Z, Wu M, Wang L, Zhang S, Zheng Y, Chen H, Wang J, Li Y (2014) Multifunctional graphene oxidebased triple stimuliresponsive nanotheranostics. Adv Funct Mater 24:4386–4396

    Article  Google Scholar 

  • Chen H, Liu F, Lei Z, Ma L, Wang Z (2015) Fe2O3@ Au core@ shell nanoparticle–graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy. RSC Adv 5:84980–84987

    Article  Google Scholar 

  • Chen H, Liu Z, Li S, Su C, Qiu X, Zhong H, Guo Z (2016) Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics 6:1096

    Article  Google Scholar 

  • Chng ELK, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chem-Eur J 19:8227–8235

    Article  Google Scholar 

  • Chng ELK, Pumera M (2015) Toxicity of graphene related materials and transition metal dichalcogenides. RSC Adv 5:3074–3080

    Article  Google Scholar 

  • Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K (2012) Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35

    Article  Google Scholar 

  • Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891

    Article  Google Scholar 

  • Chowdhury SM, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B (2013) Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34:283–293

    Article  Google Scholar 

  • Chuang MK, Lin SW, Chen FC, Chu CW, Hsu CS (2014) Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6:1573–1579

    Article  Google Scholar 

  • Clark G, Kesmodel L (1993) Ultrahigh vacuum scanning tunneling microscopy studies of platinum on graphite. J Vac Sci Technol, B 11:131–136

    Article  Google Scholar 

  • Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir (111). Nano Lett 8:565–570

    Article  Google Scholar 

  • Coraux J, Engler M, Busse C, Wall D, Buckanie N, Zu Heringdorf FJ. M., Van Gastel, R., Poelsema, B. & Michely, T. 2009. Growth of graphene on Ir (111). New Journal of Physics, 11, 023006

    Google Scholar 

  • Couillard M, Pratontep S, Palmer R (2003) Metastable ordered arrays of size-selected Ag clusters on graphite. Appl Phys Lett 82:2595

    Article  Google Scholar 

  • Crespo P, Litrán R, Rojas T, Multigner M, de la Fuente J, Sánchez-López J, García M, Hernando A, Penadés S, Fernández A (2004) Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys Rev Lett 93:087204

    Article  Google Scholar 

  • Cui M, Zhao Y, Song Q (2014) Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends Anal Chem 57:73–82

    Article  Google Scholar 

  • Danielsen PH, Cao Y, Roursgaard M, Møller P, Loft S (2015) Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology 9:813–824

    Article  Google Scholar 

  • Das S, Singh S, Singh V, Joung D, Dowding JM, Reid D, Anderson J, Zhai L, Khondaker SI, Self WT (2013) Oxygenated functional group density on graphene oxide: its effect on cell toxicity. Part Part Syst Charact 30:148–157

    Article  Google Scholar 

  • De Parga AV, Calleja F, Borca B, Passeggi Jr M, Hinarejos J, Guinea F, Miranda R (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807

    Google Scholar 

  • Dedkov YS, Fonin M, Rüdiger U, Laubschat C (2008) Graphene-protected iron layer on Ni (111). Appl Phys Lett 93:022509

    Article  Google Scholar 

  • Degen S, Becker C, Wandelt K (2004) Thin alumina films on Ni 3 Al (111): a template for nanostructured Pd cluster growth. Faraday Discuss 125:343–356

    Article  Google Scholar 

  • Dembereldorj U, Choi SY, Ganbold EO, Song NW, Kim D, Choo J, Lee SY, Kim S, Joo SW (2014) Gold nanorod assembled PEGylated graphene oxide nanocomposites for photothermal cancer therapy. Photochem Photobiol 90:659–666

    Article  Google Scholar 

  • di Vece M, Grandjean D, van Bael M, Romero C, Wang X, Decoster S, Vantomme A, Lievens P (2008) Hydrogen-induced ostwald ripening at room temperature in a Pd nanocluster film. Phys Rev Lett 100:236105

    Article  Google Scholar 

  • Dietsche R, Lim DC, Bubek M, Lopez Salido I, Ganteför G, Kim YD (2008) Comparison of electronic structures of mass-selected Ag clusters and thermally grown Ag islands on sputter-damaged graphite surfaces. Appl Phys A 90:395–398

    Google Scholar 

  • Díez I, Ras RH (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970

    Article  Google Scholar 

  • Ding H, Schmid A, Keavney D, Li D, Cheng R, Pearson J, Fradin F, Bader S (2005) Selective growth of Co nanoislands on an oxygen-patterned Ru (0001) surface. Phys Rev B 72:035413

    Article  Google Scholar 

  • Djurišić AB, Leung YH, Ng A, Xu XY, Lee PK, Degger N (2015) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44

    Article  Google Scholar 

  • Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  Google Scholar 

  • Donner K, Jakob P (2009) Structural properties and site specific interactions of Pt with the graphene/Ru (0001) moiré overlayer. J Chem Phys 131:164701

    Article  Google Scholar 

  • Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhalation Toxicol 19:849–856

    Article  Google Scholar 

  • Dupas C, Lahmani M (2007) Nanoscience: nanotechnologies and nanophysics, Springer Science & Business Media

    Google Scholar 

  • Dupraz CJF, Nickels P, Beierlein U, Huynh WU, Simmel FC (2003) Towards molecular-scale electronics and biomolecular self-assembly. Superlattices Microstruct 33:369–379

    Article  Google Scholar 

  • Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, Bogyo M (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973

    Article  Google Scholar 

  • Enderlein C, Kim Y, Bostwick A, Rotenberg E, Horn K (2010) The formation of an energy gap in graphene on ruthenium by controlling the interface. New J Phys 12:033014

    Article  Google Scholar 

  • Evans J, Thiel P, Bartelt MC (2006) Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf Sci Rep 61:1–128

    Article  Google Scholar 

  • Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N (2016) Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev 322:1–29

    Article  Google Scholar 

  • Feibelman PJ (2008) Pinning of graphene to Ir (111) by flat Ir dots. Phys Rev B 77:165419

    Article  Google Scholar 

  • Fiorillo M, Verre AF, Iliut M, Peiris Pagés M, Ozsvari B, Gandara R, Cappello AR, Sotgia F, Vijayaraghavan A, Lisanti MP (2015) Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 6:3553–3562

    Google Scholar 

  • Fonin M, Dedkov YS, Rüdiger U, Güntherodt G (2003) Growth and structure of Mn on Au (111) at room temperature. Surf Sci 529:L275–L280

    Article  Google Scholar 

  • Freire RL, Kiejna A, da Silva JL (2014) Adsorption of Rh, Pd, Ir, and Pt on the Au (111) and Cu (111) surfaces: A density functional theory investigation. J Phys Chem C 118:19051–19061

    Article  Google Scholar 

  • Fujita T, Kobayashi W, Oshima C (2005) Novel structures of carbon layers on a Pt (111) surface. Surf Interface Anal 37:120–123

    Article  Google Scholar 

  • Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu (111). Nano Lett 10:3512–3516

    Article  Google Scholar 

  • Gao H, Xiao F, Ching CB, Duan H (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS App Mater Interfaces 3:3049–3057

    Article  Google Scholar 

  • Gautier C, Bürgi T (2008) Chiral inversion of gold nanoparticles. J Am Chem Soc 130:7077–7084

    Article  Google Scholar 

  • Geddes CD, Lakowicz JR (2009) Reviews in fluorescence 2007. Springer

    Google Scholar 

  • Geetha Bai R, Kasturi M, Sivakumar M (2015) Nanotechnology applications for tissue engineering. In: Thomas S, Grohens Y, Ninan N (eds) Nanomedicine in theranostics. Elsevier, Netherlands, pp 195–213

    Google Scholar 

  • Geetha Bai R, Muthoosamy K, Shipton FN, Pandikumar A, Rameshkumar P, Huang NM, Manickam S (2016) The biogenic synthesis of a reduced graphene oxide–silver (RGO–Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Adv 6:36576–36587

    Google Scholar 

  • Gehrig S, Sami H, Ogris M (2014) Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Ther Deliv 5:1275–1296

    Article  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  • Gerber T, Busse C, Mysliveček J, Coraux J, Michely T (2009) A versatile fabrication method for cluster superlattices. New J Phys 11:103045

    Article  Google Scholar 

  • Gerber T, Knudsen J, Feibelman PJ, Granas E, Stratmann P, Schulte K, Andersen JN, Michely T (2013) CO-induced Smoluchowski ripening of Pt cluster arrays on the graphene/Ir (111) Moiré. ACS Nano 7:2020–2031

    Article  Google Scholar 

  • Gierz I, Riedl C, Starke U, Ast CR, Kern K (2008) Atomic hole doping of graphene. Nano Lett 8:4603–4607

    Article  Google Scholar 

  • Giovannetti G, Khomyakov P, Brocks G, Karpan VV, van den Brink J, Kelly P (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803

    Article  Google Scholar 

  • Giovanni M, Yue J, Zhang L, Xie J, Ong CN, Leong DT (2015) Pro-inflammatory responses of RAW264. 7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. J Hazard Mater 297:146–152

    Article  Google Scholar 

  • Goldby I, Kuipers L, von Issendorff B, Palmer R (1996) Diffusion and aggregation of sizeselected silver clusters on a graphite surface. Appl Phys Lett 69:2819–2821

    Article  Google Scholar 

  • Graham G, Schmitz P, Thiel PA (1990) Growth of Rh, Pd, and Pt films on Cu (100). Phys Rev B 41:3353

    Article  Google Scholar 

  • Gu Y, Wen Q, Kuang Y, Tang L, Jiang J (2014) Peptide-templated gold nanoclusters as a novel label-free biosensor for the detection of protease activity. RSC Advances 4:13753–13756

    Article  Google Scholar 

  • Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968

    Article  Google Scholar 

  • Habiba K, Encarnacion Rosado J, Garcia-Pabon K., Villalobos Santos JC, Makarov VI, Avalos JA, Weiner BR, Morell G (2016) Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites. Int J Nanomed 11:107

    Google Scholar 

  • Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Structural, electronic, and impuritydoping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42:1297–1300

    Article  Google Scholar 

  • Hamada I, Otani M (2010) Comparative van der Waals density-functional study of graphene on metal surfaces. Phys Rev B 82:153412

    Article  Google Scholar 

  • Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–325

    Article  Google Scholar 

  • Hidalgo C (2012) Physical properties of biological membranes and their functional implications, Springer Science & Business Media

    Google Scholar 

  • Holt Hindle P, Nigro S, Asmussen M, Chen A (2008) Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem Commun 10:1438–1441

    Google Scholar 

  • Hong Y, Ku M, Heo D, Hwang S, Lee E, Park J, Choi J, Lee HJ, Seo M, Lee EJ (2014) Molecular recognition of proteolytic activity in metastatic cancer cells using fluorogenic gold nanoprobes. Biosens Bioelectron 57:171–178

    Article  Google Scholar 

  • Hövel H, Becker T, Bettac A, Reihl B, Tschudy M, Williams E (1997) Controlled cluster condensation into preformed nanometer-sized pits. J Appl Phys 81:154–158

    Article  Google Scholar 

  • Hsin YL, Hwang KC, Yeh CT (2007) Poly (vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010

    Article  Google Scholar 

  • Huang L, Pan Y, Pan L, Gao M, Xu W, Que Y, Zhou H, Wang Y, Du S, Gao HJ (2011) Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru (0001) surfaces. Appl Phys Lett 99:163107

    Article  Google Scholar 

  • Huang CC, Chang PY, Liu CL, Xu JP, Wu SP, Kuo WC (2015) New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale 7:12689–12697

    Article  Google Scholar 

  • Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Google Scholar 

  • Hupalo M, Tringides M (2007) Ultrafast kinetics in Pb∕Si (111) from the collective spreading of the wetting layer. Phys Rev B 75:235443

    Article  Google Scholar 

  • Hupalo M, Conrad E, Tringides M (2009) Growth mechanism for epitaxial graphene on vicinal 6 H-SiC (0001) surfaces: a scanning tunneling microscopy study. Phys Rev B 80:041401

    Article  Google Scholar 

  • Hupalo M, Binz S, Tringides M (2011a) Strong metal adatom–substrate interaction of Gd and Fe with graphene. J Phys: Condens Matter 23:045005

    Google Scholar 

  • Hupalo M, Liu X, Wang CZ, Lu WC, Yao YX, Ho KM, Tringides MC (2011b) Metal nanostructure formation on graphene: weak versus strong bonding. Adv Mater 23:2082–2087

    Article  Google Scholar 

  • Hvolbæk B, Janssens TV, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18

    Article  Google Scholar 

  • Ivanovskaya V, Zobelli A, Teillet Billy D, Rougeau N, Sidis V, Briddon P (2010) Hydrogen adsorption on graphene: a first principles study. Eur Phys J B 76:481–486

    Google Scholar 

  • Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, Pokhrel S, Madler L, Heinlaan M, Kisand V (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 15:1914–1929

    Article  Google Scholar 

  • Jakob P, Gsell M, Menzel D (1999) Directional preference in particle motion: Self-trapping of vacancies in an ordered adsorbate layer. Phys Rev B 59:13285

    Article  Google Scholar 

  • Ji K, Chang G, Oyama M, Shang X, Liu X, He Y (2012) Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell. Electrochim Acta 85:84–89

    Article  Google Scholar 

  • Jia WZ, Wang K, Zhu ZJ, Song HT, Xia XH (2007) One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process. Langmuir 23:11896–11900

    Article  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  Google Scholar 

  • Kalluru P, Vankayala R, Chiang C-S, Hwang KC (2016) Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 95:1–10

    Article  Google Scholar 

  • Kanakia S, Toussaint JD, Chowdhury SM, Tembulkar T, Lee S, Jiang YP, Lin RZ, Shroyer KR, Moore W, Sitharaman B (2014) Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 35:7022–7031

    Article  Google Scholar 

  • Kang H, Jang SW, Pak JH, Shim S (2015) Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-κB activation. Mol Cell Biochem 403:85–94

    Article  Google Scholar 

  • Kennedy TAC, Maclean JL, Liu J (2012) Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem Commun 48:6845–6847

    Article  Google Scholar 

  • Ketchie WC, Murayama M, Davis RJ (2007) Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top Catal 44:307–317

    Article  Google Scholar 

  • Kholmanov I, Gavioli L, Fanetti M, Casella M, Cepek C, Mattevi C, Sancrotti M (2007) Effect of substrate surface defects on the morphology of Fe film deposited on graphite. Surf Sci 601:188–192

    Article  Google Scholar 

  • Khomyakov P, Giovannetti G, Rusu P, Brocks GV, van den Brink J, Kelly P (2009) First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B 79:195425

    Article  Google Scholar 

  • Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY (2016) Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Controlled Release 226:217–228

    Article  Google Scholar 

  • Kitakami O, Okamoto S, Shimada Y (1996) Effect of surface free energy of underlayer materials on crystal growth of Co polycrystalline films. J Appl Phys 79:6880–6883

    Article  Google Scholar 

  • Kjeldsen L, Bjerrum OW, Hovgaard D, Johnsen AH, Sehested M, Borregaard N (1992) Human neutrophil gelatinase: a marker for circulating blood neutrophils. Purification and quantitation by enzyme linked immunosorbent assay. Eur J Haematol 49:180–191

    Article  Google Scholar 

  • Koh TW, Hiszpanski AM, Sezen M, Naim A, Galfsky T, Trivedi A, Loo YL, Menon V, Rand BP (2015) Metal nanocluster light-emitting devices with suppressed parasitic emission and improved efficiency: Exploring the impact of photophysical properties. Nanoscale 7:9140–9146

    Article  Google Scholar 

  • Kondo T, Iwasaki Y, Honma Y, Takagi Y, Okada S, Nakamura J (2009) Formation of nonbonding π electronic states of graphite due to Pt-C hybridization. Phys Rev B 80:233408

    Article  Google Scholar 

  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  Google Scholar 

  • Lahiri J, Batzill M (2010) Graphene destruction by metal-carbide formation: An approach for patterning of metal-supported graphene. Appl Phys Lett 97:023102

    Article  Google Scholar 

  • Lalwani G, Sundararaj JL, Schaefer K, Button T, Sitharaman B (2014) Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging-X-ray computed tomography contrast agent. J Mater Chem B 2:3519–3530

    Article  Google Scholar 

  • Lang B (1975) A LEED study of the deposition of carbon on platinum crystal surfaces. Surf Sci 53:317–329

    Article  Google Scholar 

  • Latorre A, Somoza Á (2012) DNA mediated silver nanoclusters: synthesis, properties and applications. ChemBioChem 13:951–958

    Article  Google Scholar 

  • Le AT, Giang CD, Tuan TQ, Phan VN, Alonso J, Devkota J, Garaio E, García JÁ, Martín Rodríguez R, Fdez Gubieda ML (2016) Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology 27:155707

    Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  • Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295

    Article  Google Scholar 

  • Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  • Li J, Lyv Z, Li Y, Liu H, Wang J, Zhan W, Chen H, Chen H, Li X (2015a) A theranostic prodrug delivery system based on Pt (IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials 51:12–21

    Article  Google Scholar 

  • Li X, Zhang Y, Wu Y, Duan Y, Luan X, Zhang Q, An Q (2015b) Combined photothermal and surface-enhanced Raman spectroscopy effect from spiky noble metal nanoparticles wrapped within graphene-polymer layers: using layer-by-layer modified reduced graphene oxide as reactive precursors. ACS Appl Mater Interfaces 7:19353–19361

    Article  Google Scholar 

  • Li Z, Ke H, Wang J, Miao Z, Yue X (2016) Graphene oxide and gadolinium-chelate functionalized poly (lactic acid) nanocapsules encapsulating perfluorooctylbromide for ultrasound/magnetic resonance bimodal imaging guided photothermal ablation of cancer. J Nanosci Nanotechnol 16:2201–2209

    Article  Google Scholar 

  • Liao Q, Zhang H, Wu K, Li H, Bao S, He P (2011) Nucleation and growth of monodispersed cobalt nanoclusters on graphene moiré on Ru (0001). Nanotechnology 22:125303

    Article  Google Scholar 

  • Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401

    Article  Google Scholar 

  • Lin J, Chen X, Huang P (2016a) Graphene-based nanomaterials for bioimaging. Adv Drug Delivery Rev

    Google Scholar 

  • Lin J, Wang X, Shen G, Cui D (2016b) 3D plasmonic ensembles of graphene oxide and nobel metal nanoparticles with ultrahigh SERS activity and sensitivity. J Nanomaterials

    Google Scholar 

  • Liu X, Wang C, Hupalo M, Yao Y, Tringides M, Lu W, Ho K (2010) Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys Rev B 82:245408

    Article  Google Scholar 

  • Liu CL, Wu HT, Hsiao YH, Lai CW, Shih CW, Peng YK, Tang KC, Chang HW, Chien YC, Hsiao JK (2011a) Insulindirected synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed 50:7056–7060

    Article  Google Scholar 

  • Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J (2011b) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034–12040

    Article  Google Scholar 

  • Liu L, Zhou Z, Guo Q, Yan Z, Yao Y, Goodman DW (2011c) The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surf Sci 605:L47–L50

    Article  Google Scholar 

  • Liu X, Wang CZ, Hupalo M, Lu WC, Thiel PA, Ho KM, Tringides MC (2011d) Fe-Fe adatom interaction and growth morphology on graphene. Phys Rev B 84:235446

    Article  Google Scholar 

  • Liu X, Hupalo M, Wang CZ, Lu WC, Thiel PA, Ho KM, Tringides MC (2012a) Growth morphology and thermal stability of metal islands on graphene. Phys Rev B 86:081414

    Article  Google Scholar 

  • Liu X, Wang CZ, Hupalo M, Lu W, Tringides MC, Yao Y, Ho K-M (2012b) Metals on graphene: Correlation between adatom adsorption behavior and growth morphology. Phys Chem Chem Phys 14:9157–9166

    Article  Google Scholar 

  • Liu X, Wang CZ, Hupalo M, Lin HQ, Ho K-M, Tringides MC (2013a) Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3:79–111

    Article  Google Scholar 

  • Liu X, Wang F, Aizen R, Yehezkeli O, Willner I (2013b) Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc 135:11832–11839

    Article  Google Scholar 

  • Lopez N, Janssens T, Clausen B, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223:232–235

    Article  Google Scholar 

  • Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41:3594–3623

    Article  Google Scholar 

  • Lu Y, Wu P, Yin Y, Zhang H, Cai C (2014) Aptamer-functionalized graphene oxide for highly efficient loading and cancer cell-specific delivery of antitumor drug. J Mater Chem B 2:3849–3859

    Article  Google Scholar 

  • Luna LAV, Moraes ACM, Consonni SR, Pereira CD, Cadore S, Giorgio S, Alves OL (2016) Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J Nanobiotechnol 14:1

    Article  Google Scholar 

  • Luo Z, Somers LA, Dan Y, Ly T, Kybert NJ, Mele E, Johnson AC (2010) Size-selective nanoparticle growth on few-layer graphene films. Nano Lett 10:777–781

    Article  Google Scholar 

  • Lux F, Sancey L, Bianchi A, Crémillieux Y, Roux S, Tillement O (2015) Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine 10:1801–1815

    Article  Google Scholar 

  • Ma Z, Liang C, Overbury SH, Dai S (2007) Gold nanoparticles on electroless-deposition-derived MnO x/C: synthesis, characterization, and catalytic CO oxidation. J Catal 252:119–126

    Article  Google Scholar 

  • Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research 5:199–212

    Article  Google Scholar 

  • Ma Y, Huang J, Song S, Chen H, Zhang Z (2016) Cancertargeted nanotheranostics: Recent advances and perspectives. Small

    Google Scholar 

  • Manikandan M, Abdelhamid HN, Talib A, Wu HF (2014) Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron 55:180–186

    Article  Google Scholar 

  • Marchini S, Günther S, Wintterlin J (2007) Scanning tunneling microscopy of graphene on Ru (0001). Phys Rev B 76:075429

    Article  Google Scholar 

  • Martínez Galera AJ, Brihuega I, Gómez Rodríguez JM (2011) Ethylene irradiation: a new route to grow graphene on low reactivity metals. Nano Lett 11:3576–3580

    Google Scholar 

  • Martoccia D, Björck M, Schlepütz C, Brugger T, Pauli S, Patterson B, Greber T, Willmott P (2010) Graphene on Ru (0001): a corrugated and chiral structure. New J Phys 12:043028

    Article  Google Scholar 

  • McChesney JL, Bostwick A, Ohta T, Seyller T, Horn K, González J, Rotenberg E (2010) Extended van Hove singularity and superconducting instability in doped graphene. Phys Rev Lett 104:136803

    Article  Google Scholar 

  • Meiwes B, Karl H (2012) Metal clusters at surfaces: structure, quantum properties, physical chemistry, Springer Science & Business Media

    Google Scholar 

  • Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium—single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280

    Article  Google Scholar 

  • Modugno G, Ménard Moyon C, Prato M, Bianco A (2015) Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 172:975–991

    Google Scholar 

  • Mokdad A, Dimos K, Zoppellaro G, Tucek J, Perman JA, Malina O, Andersson KK, Datta KKR, Froning JP, Zboril R (2015) The non-innocent nature of graphene oxide as a theranostic platform for biomedical applications and its reactivity towards metal-based anticancer drugs. RSC Adv 5:76556–76566

    Article  Google Scholar 

  • Molina L, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A 291:21–31

    Article  Google Scholar 

  • Moritz W, Wang B, Bocquet ML, Brugger T, Greber T, Wintterlin J, Günther S (2010) Structure determination of the coincidence phase of graphene on Ru (0001). Phys Rev Lett 104:136102

    Article  Google Scholar 

  • Muhammed MAH, Verma PK, Pal SK, Kumar R, Paul S, Omkumar RV, Pradeep T (2009) Bright, NIRemitting Au23 from Au25: characterization and applications including biolabeling. Chem Eur J 15:10110–10120

    Article  Google Scholar 

  • Muthoosamy K, Bai RG, Manickam S (2014) Graphene and graphene oxide as a docking station for modern drug delivery system. Curr Drug Deliv 11:701–718

    Google Scholar 

  • Muthoosamy K, Geetha Bai R, Abubakar IB, Sudheer SM, Lim HN, Loh H-S, Huang NM, Chia CH, Manickam S (2015) Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. Int J Nanomed 10:1505

    Google Scholar 

  • N’Diaye A, Bleikamp S, Feibelman PJ, Michely T (2006) Two dimensional Ir-cluster lattices on Moiré of graphene with Ir (111). Phys Rev Lett 97:215501–215504

    Article  Google Scholar 

  • N’Diaye AT, Johann C, Tim NP, Carsten B, Thomas M (2008) Structure of epitaxial graphene on Ir (111). New J Phys 10:043033

    Article  Google Scholar 

  • N’diaye AT, Gerber T, Busse C, Myslivecek J, Coraux J, Michely T (2009) A versatile fabrication method for cluster superlattices. New J Phys 11

    Google Scholar 

  • Ndlovu GF, Roos WD, Wang ZM, Asante JK, Mashapa MG, Jafta CJ, Mwakikunga BW, Hillie KT (2012) Epitaxial deposition of silver ultra-fine nano-clusters on defect-free surfaces of HOPG-derived few-layer graphene in a UHV multi-chamber by in situ STM, ex situ XPS, and ab initio calculations. Nanoscale Res Lett 7:1–8

    Article  Google Scholar 

  • Nergiz SZ, Gandra N, Tadepalli S, Singamaneni S (2014) Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Applied Materials & Interfaces 6:16395–16402

    Article  Google Scholar 

  • Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  • Nguyen PD, Cong VT, Baek C, Min J (2015) Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens Bioelectron (In Press)

    Google Scholar 

  • Niu X, Lan M, Chen C, Zhao H (2012) Nonenzymatic electrochemical glucose sensor based on novel Pt–Pd nanoflakes. Talanta 99:1062–1067

    Article  Google Scholar 

  • Novotny Z, Netzer F, Dohnalek Z (2016) Ceria nanoclusters on graphene/Ru (0001): a new model catalyst system. Surf Sci 652:230–237

    Article  Google Scholar 

  • Obliosca JM, Liu C, Yeh H-C (2013) Fluorescent silver nanoclusters as DNA probes. Nanoscale 5:8443–8461

    Article  Google Scholar 

  • Orecchioni M, Cabizza R, Bianco A, Delogu LG (2015) Graphene as cancer theranostic tool: progress and future challenges. Theranostics 5:710

    Article  Google Scholar 

  • Overbury SH, Schwartz V, Mullins DR, Yan W, Dai S (2006) Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J Catal 241:56–65

    Article  Google Scholar 

  • Pan Y, Dong Xia S, Hong Jun G (2007a) Formation of graphene on Ru (0001) surface. Chin Phys 16:3151

    Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen Dechent W (2007b) Sizedependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Google Scholar 

  • Pan Y, Gao M, Huang L, Liu F, Gao HJ (2009a) Directed self-assembly of monodispersed platinum nanoclusters on graphene moiré template. Appl Phys Lett 95:093106

    Article  Google Scholar 

  • Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao HJ (2009b) Highly ordered, millimeter-scale, continuous, singlecrystalline graphene monolayer formed on Ru (0001). Adv Mater 21:2777–2780

    Article  Google Scholar 

  • Park KS, Park HG (2015) A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules. Biosens Bioelectron 64:618–624

    Article  Google Scholar 

  • Park S, Chung TD, Kim HC (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal Chem 75:3046–3049

    Article  Google Scholar 

  • Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee K-H (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicol 19:59–65

    Article  Google Scholar 

  • Patthey F, Schneider WD (1995) Layer-by-layer resolved surface states of ultrathin silver islands on graphite: a photoemission study. Surf Sci 334:L715–L718

    Article  Google Scholar 

  • Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a graphene based fluorescent probe. Small 6:1686–1692

    Article  Google Scholar 

  • Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, Iavicoli I, Cortese S, Niu Q, Otsuki T (2015) Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy 13:1

    Article  Google Scholar 

  • Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  Google Scholar 

  • Pong WT, Durkan C (2005) A review and outlook for an anomaly of scanning tunnelling microscopy (STM): Superlattices on graphite. J Phys D Appl Phys 38:R329

    Article  Google Scholar 

  • Qian X, Li J, Qi L, Wang CZ, Chan TL, Yao YX, Ho KM, Yip S (2008) Quasiatomic orbitals for ab initio tight-binding analysis. Phys Rev B 78:245112

    Article  Google Scholar 

  • Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326

    Article  Google Scholar 

  • Remediakis IN, Lopez N, Nørskov JK (2005) CO oxidation on rutile-supported Au nanoparticles. Angew Chem Int Ed 117:1858–1860

    Article  Google Scholar 

  • Repain V, Baudot G, Ellmer H, Rousset S (2002) Two-dimensional long-range–ordered growth of uniform cobalt nanostructures on a Au (111) vicinal template. Europhys Lett 58:730

    Article  Google Scholar 

  • Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2009) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21:055103

    Article  Google Scholar 

  • Richard JA, Jean L, Romieu A, Massonneau M, Noack Fraissignes P, Renard PY (2007) Chemiluminescent probe for the in vitro detection of protease activity. Org Lett 9:4853–4855

    Article  Google Scholar 

  • Rodems SM, Hamman BD, Lin C, Zhao J, Shah S, Heidary D, Makings L, Stack JH, Pollok BA (2002) A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases. Assay Drug Dev Technol 1:9–19

    Article  Google Scholar 

  • Rokuta E, Hasegawa Y, Itoh A, Yamashita K, Tanaka T, Otani S, Oshima C (1999) Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surf Sci 427–428:97–101

    Article  Google Scholar 

  • Román-Velázquez CE, Noguez C, Garzón IL (2003) Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation. J Phys Chem B 107:12035–12038

    Article  Google Scholar 

  • Rucci N, Sanita P, Angelucci A (2011) Roles of metalloproteases in metastatic niche. Curr Mol Med 11:609–622

    Article  Google Scholar 

  • Sandin A, Jayasekera T, Rowe J, Kim KW, Nardelli MB, Dougherty DB (2012) Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces. Phys Rev B 85:125410

    Article  Google Scholar 

  • Schmid M, Kresse G, Buchsbaum A, Napetschnig E, Gritschneder S, Reichling M, Varga P (2007) Nanotemplate with holes: ultrathin alumina on Ni 3 Al (111). Phys Rev Lett 99:196104

    Article  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdisc Rev: Nanomed Nanobiotechnol 2:544–568

    Article  Google Scholar 

  • Sehested J, Gelten JA, Remediakis IN, Bengaard H, Nørskov JK (2004) Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. J Catal 223:432–443

    Article  Google Scholar 

  • Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216

    Article  Google Scholar 

  • Shen Q, Jiang L, Zhang H, Min Q, Hou W, Zhu J-J (2008) Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392

    Article  Google Scholar 

  • Shi J, Nie R, Chen P, Hou Z (2013) Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst. Catal Commun 41:101–105

    Article  Google Scholar 

  • Sicot M, Bouvron S, Zander O, Rüdiger U, Dedkov YS, Fonin M (2010) Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh (111). Appl Phys Lett 96:093115

    Article  Google Scholar 

  • Siddique YH, Fatima A, Jyoti S, Naz F, Khan W, Singh BR, Naqvi AH (2013) Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. PLoS ONE 8:e80944

    Article  Google Scholar 

  • Son KJ, Shin DS, Kwa T, Gao Y, Revzin A (2013) Micropatterned sensing hydrogels integrated with reconfigurable microfluidics for detecting protease release from cells. Anal Chem 85:11893–11901

    Article  Google Scholar 

  • Song W, Wang Y, Liang R-P, Zhang L, Qiu J-D (2015) Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens Bioelectron 64:234–240

    Article  Google Scholar 

  • Soy E, Liang Z, Trenary M (2015) Formation of Pt and Rh nanoclusters on a graphene Moiré pattern on Cu (111). J Phys Chem C 119:24796–24803

    Article  Google Scholar 

  • Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  Google Scholar 

  • Süle P, Szendrő M, Hwang C, Tapasztó L (2014) Rotation misorientated graphene moiré superlattices on Cu (1 1 1): classical molecular dynamics simulations and scanning tunneling microscopy studies. Carbon 77:1082–1089

    Article  Google Scholar 

  • Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Article  Google Scholar 

  • Sutter E, Albrecht P, Sutter P (2009a) Graphene growth on polycrystalline Ru thin films. Appl Phys Lett 95:133109

    Article  Google Scholar 

  • Sutter P, Hybertsen M, Sadowski J, Sutter E (2009b) Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Lett 9:2654–2660

    Article  Google Scholar 

  • Sutter E, Albrecht P, Camino FE, Sutter P (2010) Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces. Carbon 48:4414–4420

    Article  Google Scholar 

  • Sutter E, Albrecht P, Wang B, Bocquet M-L, Wu L, Zhu Y, Sutter P (2011) Arrays of Ru nanoclusters with narrow size distribution templated by monolayer graphene on Ru. Surf Sci 605:1676–1684

    Article  Google Scholar 

  • Sutter E, Wang B, Albrecht P, Lahiri J, Bocquet ML, Sutter P (2012) Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicities. J Phys: Condens Matter 24:314201

    Google Scholar 

  • Swain AK, Pradhan L, Bahadur D (2015) Polymer stabilized Fe3O4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl Mater Interfaces 7:8013–8022

    Article  Google Scholar 

  • Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310:86–89

    Article  Google Scholar 

  • Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663

    Article  Google Scholar 

  • Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  Google Scholar 

  • Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon Mucherie S, Redfern PC, Mehmood F (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216

    Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  Google Scholar 

  • Vallabani N, Mittal S, Shukla RK, Pandey AK, Dhakate SR, Pasricha R, Dhawan A (2011) Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol 7:106–107

    Article  Google Scholar 

  • Van Gastel R, Martínez Galera AJ, Coraux J, Hattab H, Wall D, Zu Heringdorf F-JM, Horn Von Hoegen M, Gómez Rodríguez JM, Poelsema B, Busse C (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056

    Google Scholar 

  • Vargová V, Pytliak M, Mechírová V (2012) Matrix metalloproteinases. Springer, Matrix Metalloproteinase Inhibitors

    Book  Google Scholar 

  • Varykhalov A, Sánchez Barriga J, Shikin A, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601

    Google Scholar 

  • Varykhalov A, Scholz MR, Kim TK, Rader O (2010) Effect of noble-metal contacts on doping and band gap of graphene. Phys Rev B 82:121101

    Article  Google Scholar 

  • Vasala K, Turpeenniemi Hujanen T (2007) Serum tissue inhibitor of metalloproteinase-2 (TIMP-2) and matrix metalloproteinase-2 in complex with the inhibitor (MMP-2:TIMP-2) as prognostic markers in bladder cancer. Clin Biochem 40:640–644

    Article  Google Scholar 

  • Venkateswara Rao C, Cabrera CR, Ishikawa Y (2011) Graphene-supported Pt–Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J Phys Chem C 115:21963–21970

    Google Scholar 

  • Vitos L, Ruban A, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411:186–202

    Article  Google Scholar 

  • Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983

    Article  Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  Google Scholar 

  • Wang B, Bocquet ML (2011) Monolayer graphene and h-BN on metal substrates as versatile templates for metallic nanoclusters. J Phys Chem Lett 2:2341–2345

    Article  Google Scholar 

  • Wang B, Bocquet ML, Marchini S, Gunther S, Wintterlin J (2008) Chemical origin of a graphene moire overlayer on Ru(0001). Phys Chem Chem Phys 10:3530–3534

    Article  Google Scholar 

  • Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081

    Article  Google Scholar 

  • Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM (2011a) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648

    Article  Google Scholar 

  • Wang W, Liang S, Yu T, Li D, Li Y, Han X (2011b) The study of interaction between graphene and metals by Raman spectroscopy. J Appl Phys 109:07C501

    Article  Google Scholar 

  • Wang Y, Zhang P, Liu CF, Zhan L, Li YF, Huang CZ (2012) Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Adv 2:2322–2328

    Article  Google Scholar 

  • Wang C, Ravi S, Garapati US, Das M, Howell M, Mallela J, Alwarappan S, Mohapatra SS, Mohapatra S (2013a) Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B 1:4396–4405

    Article  Google Scholar 

  • Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R (2013b) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135:4799–4804

    Article  Google Scholar 

  • Wang S, Zhang Q, Luo XF, Li J, He H, Yang F, Di Y, Jin C, Jiang XG, Shen S (2014a) Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials 35:9473–9483

    Article  Google Scholar 

  • Wang Y, Huang R, Liang G, Zhang Z, Zhang P, Yu S, Kong J (2014b) MRI-visualized, dualtargeting, combined tumor therapy using magnetic graphenebased mesoporous silica. Small 10:109–116

    Article  Google Scholar 

  • Wang Y, Polavarapu L, Liz Marzán LM (2014c) Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS Appl Mater Interfaces 6:21798–21805

    Article  Google Scholar 

  • Wang F, Sun Q, Feng B, Xu Z, Zhang J, Xu J, Lu L, Yu H, Wang M, Li Y (2016a) Polydopaminefunctionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer. Adv Healthc Mater

    Google Scholar 

  • Wang Y, Deng R, Xie X, Huang L, Liu X (2016b) Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. Nanoscale 8:6666–6673

    Article  Google Scholar 

  • Wehling T, Katsnelson M, Lichtenstein A (2009) Impurities on graphene: midgap states and migration barriers. Phys Rev B 80:085428

    Article  Google Scholar 

  • Wei G, Xu F, Li Z, Jandt KD (2011) Protein-promoted synthesis of Pt nanoparticles on carbon nanotubes for electrocatalytic nanohybrids with enhanced glucose sensing. J Phys Chem C 115:11453–11460

    Article  Google Scholar 

  • Weiss N, Cren T, Epple M, Rusponi S, Baudot G, Rohart S, Tejeda A, Repain V, Rousset S, Ohresser P (2005) Uniform magnetic properties for an ultrahigh-density lattice of noninteracting Co nanostructures. Phys Rev Lett 95:157204

    Article  Google Scholar 

  • Wen Q, Gu Y, Tang LJ, Yu R-Q, Jiang JH (2013) Peptide-templated gold nanocluster beacon as a sensitive, label-free sensor for protein post-translational modification enzymes. Anal Chem 85:11681–11685

    Article  Google Scholar 

  • Whelan C, Barnes C (1997) An STM study of structural transitions during the nucleation and growth of Pd and Cu cluster catalysts on HOPG. Appl Surf Sci 119:288–300

    Article  Google Scholar 

  • Wilcoxon J, Abrams B (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35:1162–1194

    Article  Google Scholar 

  • Williams WD, Shekhar M, Lee WS, Kispersky V, Delgass WN, Ribeiro FH, Kim SM, Stach EA, Miller JT, Allard LF (2010) Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water—gas shift catalysis. J Am Chem Soc 132:14018–14020

    Article  Google Scholar 

  • Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603:1841–1852

    Article  Google Scholar 

  • Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573

    Article  Google Scholar 

  • Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu XC (2008) Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer 122:2050–2056

    Article  Google Scholar 

  • Wu GH, Song XH, Wu YF, Chen XM, Luo F, Chen X (2013) Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105:379–385

    Article  Google Scholar 

  • Xiaofei W, Ruiyi L, Zaijun L, Junkang L, Guangli W, Zhiguo G (2014) Synthesis of double gold nanoclusters/graphene oxide and its application as a new fluorescence probe for Hg2+ detection with greatly enhanced sensitivity and rapidity. RSC Adv 4:24978–24985

    Article  Google Scholar 

  • Xu C, Wang X, Zhu J (2008a) Graphene–metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  Google Scholar 

  • Xu Y, Bai H, Lu G, Li C, Shi G (2008b) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  Google Scholar 

  • Xu Y, Semidey Flecha L, Liu L, Zhou Z, Goodman DW (2011) Exploring the structure and chemical activity of 2-D gold islands on graphene moiré/Ru (0001). Faraday Discuss 152:267–276

    Google Scholar 

  • Xu C, Yang D, Mei L, Li Q, Zhu H, Wang T (2013a) Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl Mater Interfaces 5:12911–12920

    Article  Google Scholar 

  • Xu C, Yang D, Mei L, Lu B, Chen L, Li Q, Zhu H, Wang T (2013b) Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector. ACS Appl Mater Interfaces 5:2715–2724

    Article  Google Scholar 

  • Yang X, Xu M, Qiu W, Chen X, Deng M, Zhang J, Iwai H, Watanabe E, Chen H (2011) Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J Mater Chem 21:8096–8103

    Article  Google Scholar 

  • Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872

    Article  Google Scholar 

  • Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795

    Article  Google Scholar 

  • Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ, Huang CC, Lin CH (2015) Photothermal therapeutic response of cancer cells to aptamer–gold nanoparticle-hybridized graphene oxide under nir illumination. ACS Appl Mater Interfaces 7:5097–5106

    Article  Google Scholar 

  • Yao Y, Wang C, Ho K (2010) Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals. Phys Rev B 81:235119

    Article  Google Scholar 

  • Yazyev OV, Pasquarello A (2010) Metal adatoms on graphene and hexagonal boron nitride: Towards rational design of self-assembly templates. Phys Rev B 82:045407

    Article  Google Scholar 

  • Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    Article  Google Scholar 

  • Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  Google Scholar 

  • Yoon B, Häkkinen H, Landman U (2003) Interaction of O2 with gold clusters: molecular and dissociative adsorption. J Phys Chem A 107:4066–4071

    Article  Google Scholar 

  • Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, Dong X, Wang Z, Gu Z, Ma X (2015) Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5:931

    Article  Google Scholar 

  • Yuan Z, Chen YC, Li HW, Chang HT (2014) Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun 50:9800–9815

    Article  Google Scholar 

  • Yuan Y, Zhang Y, Liu B, Wu H, Kang Y, Li M, Zeng X, He N, Zhang G (2015) The effects of multifunctional MiR-122-loaded graphene-gold composites on drug-resistant liver cancer. J Nanobiotechnol 13:1

    Article  Google Scholar 

  • Zedan AF, Moussa S, Terner J, Atkinson G, el Shall MS (2012) Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions. ACS Nano 7:627–636

    Article  Google Scholar 

  • Zhang L, Wang E (2014) Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9:132–157

    Article  Google Scholar 

  • Zhang J, Sessi V, Michaelis C, Brihuega I, Honolka J, Kern K, Skomski R, Chen X, Rojas G, Enders A (2008) Ordered layers of Co clusters on BN template layers. Phys Rev B 78:165430

    Article  Google Scholar 

  • Zhang H, Fu Q, Cui Y, Tan D, Bao X (2009a) Fabrication of metal nanoclusters on graphene grown on Ru (0001). Chin Sci Bull 54:2446–2450

    Article  Google Scholar 

  • Zhang H, Fu Q, Cui Y, Tan D, Bao X (2009b) Growth mechanism of graphene on Ru (0001) and O2 adsorption on the graphene/Ru (0001) surface. J Phys Chem C 113:8296–8301

    Article  Google Scholar 

  • Zhang Y, Gu YE, Lin S, Wei J, Wang Z, Wang C, Du Y, Ye W (2011) One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim Acta 56:8746–8751

    Article  Google Scholar 

  • Zhang M, Cao Y, Chong Y, Ma Y, Zhang H, Deng Z, Hu C, Zhang Z (2013) Graphene oxide based theranostic platform for T 1-weighted magnetic resonance imaging and drug delivery. ACS Appl Mater Interfaces 5:13325–13332

    Article  Google Scholar 

  • Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, Zhang Y, Zhou Z, Yang S (2015) Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials 42:66–77

    Article  Google Scholar 

  • Zhao X, Liu L, Li X, Zeng J, Jia X, Liu P (2014) Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir 30:10419–10429

    Article  Google Scholar 

  • Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  Google Scholar 

  • Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781

    Article  Google Scholar 

  • Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble metal quantum dots. Annu Rev Phys Chem 58:409

    Article  Google Scholar 

  • Zhi F, Dong H, Jia X, Guo W, Lu H, Yang Y, Ju H, Zhang X, Hu Y (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS ONE 8:e60034

    Article  Google Scholar 

  • Zhou R, Shi M, Chen X, Wang M, Chen H (2009) Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomoleculeassisted etching of nanometersized gold particles and rods. Chem—Eur J 15:4944–4951

    Article  Google Scholar 

  • Zhou Z, Gao F, Goodman DW (2010) Deposition of metal clusters on single-layer graphene/Ru (0001): factors that govern cluster growth. Surf Sci 604:L31–L38

    Article  Google Scholar 

  • Zhou X, Dorn M, Vogt J, Spemann D, Yu W, Mao Z, Estrela Lopis I, Donath E, Gao C (2014) A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity. Nanoscale 6:8535–8542

    Google Scholar 

  • Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Nottingham Malaysia Campus for the Internal Grant (UNR20007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Manickam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Muthoosamy, K., Bai, R., Manickam, S. (2017). Graphene Metal Nanoclusters in Cutting-Edge Theranostics Nanomedicine Applications. In: Tripathi, A., Melo, J. (eds) Advances in Biomaterials for Biomedical Applications. Advanced Structured Materials, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3328-5_11

Download citation

Publish with us

Policies and ethics