Skip to main content

Optimal Tuning of PID Controller for Coupled Tank Liquid Level Control System Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Proceedings of Sixth International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 547))

Abstract

In this paper, particle swarm optimization (PSO) algorithm is presented for determining the optimal gains for a proportional-integral-derivative (PID) controller; which is implemented on a coupled tank control system to maintain the liquid level. Coupled tank system is a non-linear system and finds a wide application in industrial systems; and the quality of control directly affects the quality of uniform products, safety and cost. Initially, Ziegler-Nichols method has been used for the PID tuning but the method does not work perfectly due to lack of precision, long run time and lack of stability. The simulation results indicate that better performance has been obtained for the PSO tuned PID controller as compared with those obtained from GA & ZN tuned controllers. As per the results obtained in the paper, the proposed method is more effective in improving the time domain characteristics such as rise time, settling time, maximum overshoot and steady state error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhuvaneswari, N.S., Uma, G., Rangaswamy, T.R.: Adaptive and optimal control of a non-linear process using intelligent controllers. Appl. Soft Comput. 9(1), 82–190 (2009). Elsevier

    Article  Google Scholar 

  2. Capón-García, E., Espuña, A., Puigjaner, L.: Statistical and simulation tools for designing an optimal blanketing system of a multiple-tank facility. Chem. Eng. J. 152(1), 122–132 (2009)

    Article  Google Scholar 

  3. Seth, B., J, D.S.: Liquid level control. In: Control System Laboratory (ME413). IIT Bombay 2006-07

    Google Scholar 

  4. Åström, K.J., Albertos, P., Quevedo, J.: PID control. Control Eng. Pract. 9, 159–1161 (2001)

    Article  Google Scholar 

  5. Nise, N.S.: Control System Engineering, 4th edn. (2003)

    Google Scholar 

  6. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall Inc., New Jersey (2001)

    Google Scholar 

  7. Larbes, C., Aït Cheikh, S.M., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 34(10), 2093–2100 (2009). Elsevier Ltd.

    Article  Google Scholar 

  8. Jean-Pierre, C.: Process Control: Theory and Applications, pp. 132–133. Springer, London (2004)

    Google Scholar 

  9. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. SMC 16(1), 122–128 (1986)

    Article  Google Scholar 

  10. Singh, S.K., Katal, N., Modani, S.G.: Multi-objective optimization of PID controller for coupled-tank liquid-level control system using genetic algorithm. In: Babu, B.V., Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (eds.) Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28–30, 2012. AISC, vol. 236, pp. 59–66. Springer, New Delhi (2014). doi:10.1007/978-81-322-1602-5_7

    Chapter  Google Scholar 

  11. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics 1997, Piscataway, NJ, pp. 4104–4109 (1997)

    Google Scholar 

  13. Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 1998), Anchorage, Alaska, USA (1998)

    Google Scholar 

  14. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  15. Blanks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Blanks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. Natural Computing Series, pp. 43–85. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Hayder, A.H., Ceylan, H., Ayvaz, M.T., Gurarslan, A.: PSOLVER: a new hybrid particle swarm optimization algorithm for solving continuous optimization problems. Expert Syst. Appl. 37(10), 6798–6808 (2010)

    Article  Google Scholar 

  19. Rameshkumar, K., Rajendran, C., Mohanasundaram, K.M.: A novel particle swarm optimisation algorithm for continuous function optimisation. Int. J. Oper. Res. 13(1), 1–21 (2012)

    Article  Google Scholar 

  20. Katal, N., Narayan, S.: Multi-objective optimization-based design of robust fractional-order PIλDμ controller for coupled tank systems. In: Pant, M., Deep, K., Bansal, J.C., Nagar, A., Das, K.N. (eds.) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. AISC, vol. 437, pp. 27–38. Springer, Singapore (2016). doi:10.1007/978-981-10-0451-3_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Singh, S.K., Katal, N. (2017). Optimal Tuning of PID Controller for Coupled Tank Liquid Level Control System Using Particle Swarm Optimization. In: Deep, K., et al. Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 547. Springer, Singapore. https://doi.org/10.1007/978-981-10-3325-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3325-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3324-7

  • Online ISBN: 978-981-10-3325-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics