Skip to main content

Wearable Haptic Based Pattern Feedback Sleeve System

  • Conference paper
  • First Online:
Proceedings of Sixth International Conference on Soft Computing for Problem Solving

Abstract

This paper presents how humans trained in primitive haptic based patterns using a wearable sleeve, can recognize their scaling and shifting. The wearable sleeve consisted of 7 vibro-actuators to stimulate subjects arm to convey the primitive haptic based patterns. The focus of this study to understand (1) whether the human somatosensory system uses primitive patterns that can be modeled using Gaussian like functions to represent haptic perceptions, (2) whether these primitive representations are localized (cannot be shifted along the skin) and magnitude specific (cannot be scaled). These insights will help to develop more efficient haptic feedback systems using a small number of templates to be learnt to encode complex haptic messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hale, K.S., Stanney, K.M.: Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Comput. Graph. Appl. 24(2), 33–39 (2004)

    Article  Google Scholar 

  2. Gilson, R.D., Redden, E.S., Elliott, L.R.: Remote tactile displays for future soldiers, technical report, DTIC Document (2007)

    Google Scholar 

  3. Jones, L.A., Lederman, S.J.: Human hand function. Oxford University Press (2006)

    Google Scholar 

  4. Gilson, R.D., Redden, E.S., Elliott, L.R.: Remote tactile displays for future soldiers, University of Central Florida, Orlando (2007)

    Google Scholar 

  5. Tsukada, K., Yasumura, M.: ActiveBelt: belt-type wearable tactile display for directional navigation. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 384–399. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30119-6_23

    Chapter  Google Scholar 

  6. Bliss, J.C., Katcher, M.H., Rogers, C.H., Shepard, R.P.: Optical-to-tactile image conversion for the blind. IEEE Trans. Man Mach. Syst. 11(1), 58–65 (1970)

    Article  Google Scholar 

  7. Wall III, C., Weinberg, M.S., Schmidt, P.B., Krebs, D.E.: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans. Biomed. Eng. 48(10), 1153–1161 (2001)

    Article  Google Scholar 

  8. Priplata, A.A., Niemi, J.B., Harry, J.D., Lipsitz, L.A., Collins, J.J.: Vibrating insoles and balance control in elderly people. Lancet 362(9390), 1123–1124 (2003)

    Article  Google Scholar 

  9. Rupert, A.H.: An instrumentation solution for reducing spatial disorientation mishaps. IEEE Eng. Med. Biol. Mag. 19(2), 71–80 (2000)

    Article  Google Scholar 

  10. Van Erp, J.B.: Guidelines for the use of vibro-tactile displays in human computer interaction. In: Proceedings of Eurohaptics, pp. 18–22. IEEE (2002)

    Google Scholar 

  11. Stepanenko, Y., Sankar, T.S.: Vibro-impact analysis of control systems with mechanical clearance and its application to robotic actuators. J. Dyn. Syst. Meas. Control 108(1), 9–16 (1986)

    Article  MATH  Google Scholar 

  12. Benali-Khoudja, M., Hafez, M., Alexandre, J.M., Khedda, A., Moreau, V.: VITAL: a new low-cost vibro-tactile display system. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 721–726 (2004)

    Google Scholar 

  13. Zaitsev, V., Sas, P.: Nonlinear response of a weakly damaged metal sample: a dissipative modulation mechanism of vibro-acoustic interaction. J. Vibr. Control 6(6), 803–822 (2000)

    Article  Google Scholar 

  14. Thoroughman, K.A., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407(6805), 742–747 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UK Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/I028765/1 and grant no. EP/NO3211X/1, the Guy’s and St Thomas’ Charity grant on developing clinician-scientific interfaces in robotic assisted surgery: translating technical innovation into improved clinical care (grant no. R090705), Higher Education Innovation Fund (HEIF), and Vattikuti foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Ranasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ranasinghe, A., Althoefer, K., Dasgupta, P., Nagar, A., Nanayakkara, T. (2017). Wearable Haptic Based Pattern Feedback Sleeve System. In: Deep, K., et al. Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 547. Springer, Singapore. https://doi.org/10.1007/978-981-10-3325-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3325-4_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3324-7

  • Online ISBN: 978-981-10-3325-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics