Hybrid Monte-Carlo in Multiple Missing Data Imputations with Application to a Bone Fracture Data

Part of the ICSA Book Series in Statistics book series (ICSABSS)


In this chapter we introduce Hybrid Monte-Carlo (HMC) as an efficient method to sample from complex posterior distributions of many correlated parameters from a semi-parametric missing data model. The HMC enables a distribution-free likelihood-based approach to multiple imputation of missing values. We describe the modeling approach for modeling missing values that does not require assuming any specific distributional forms. We then describe the use of the HMC sampler to obtain inferences and generate multiple imputations under the model, and touch upon various implementation issues, such as choosing starting values, determining burn-in period, monitoring convergence , deciding stopping times. An R program is provided for analyzing missing data from a Bone Fracture study.


Multiple Imputation Dirichlet Process Imputation Model Impute Dataset Full Conditional Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barengolts, E., Karanouh, D., Kolodny, L., & Kukreja, S. (2001). Risk factors for hip fractures in predominantly African-American veteran male population. Journal of Bone and Mineral Research, 16, S170.Google Scholar
  2. Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J., & Stuart, A. (2013). Optimal tuning of the hybrid Monte-Carlo algorithm. Bernoulli, 19, 1501–1534.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chen, H.Y., Xie, H., & Qian, Y. (2011). Multiple imputation for missing values through conditional semiparametric odds ratio models. Biometrics, 10–13.Google Scholar
  4. Chen, H. Y. (2004). Nonparametric and semiparametric models for missing covariates in parametric regressions. Journal of the American Statistical Association, 99, 1176–1189.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte-Carlo. Physics Letters B, 195(2), 216–222.CrossRefGoogle Scholar
  6. Gelman, A., & Raghunathan, T. E. (2001). Discussion on “conditionally specified distributions: An introduction”. Statistical Science, 15, 268–269.Google Scholar
  7. Gelman, A., & Speed, T. P. (1993). Characterizing a joint probability distribution by conditionals. Journal of the Royal Statistical Society. Series B, 55, 185–188.MathSciNetzbMATHGoogle Scholar
  8. Gelman, A., & Speed, T. P. (1999). Corrigendum: Characterizing a joint probability distribution by conditionals. Journal of the Royal Statistical Society. Series B, 61, 483.CrossRefzbMATHGoogle Scholar
  9. Geweke, J. (1992). Evaluating the accuracy of sampling–based approaches to calculating posterior moments. In J. M. Bernado, J. O. Berger, A. P. Dawid & A. F. M. Smith (Eds.), Bayesian Statistics 4. Oxford: Clarendon Press.Google Scholar
  10. Harel, O., & Zhou, X. H. (2007). Multiple imputation: Review of theory, implementation and software. Statistics in Medicine, 26, 3057–3077.MathSciNetCrossRefGoogle Scholar
  11. Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. American Statistician, 55, 244–254.MathSciNetCrossRefGoogle Scholar
  12. Ibrahim, J. G., Chen, M. H., Lipsitz, S. R., & Herring, A. H. (2005). Missing-data methods for generalized linear models: A comparative review. Journal of the American Statistical Association, 100, 332–346.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Kenward, M. G., & Carpenter, J. (2007). Multiple imputation: Current perspectives. Statistical Methods in Medical Research, 16, 199–218.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing values. New York: Wiley.zbMATHGoogle Scholar
  15. Liu, J. S. (2001). Monte-Carlo strategies in scientific computing. New York: Springer.zbMATHGoogle Scholar
  16. Qian, Y., & Xie, H. (2011). No customer left behind: A distribution-free Bayesian approach to accounting for missing Xs in regression models. Marketing Science, 30, 717–736.CrossRefGoogle Scholar
  17. Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85–95.Google Scholar
  18. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 92–581.MathSciNetCrossRefGoogle Scholar
  19. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.CrossRefzbMATHGoogle Scholar
  20. Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman and Hall / CRC Press.CrossRefzbMATHGoogle Scholar
  21. van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 219–242.MathSciNetCrossRefzbMATHGoogle Scholar
  22. van Buuren, S., Boshuizen, H. C., & Knook, D. L. (1999). Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681–694.CrossRefGoogle Scholar
  23. Xie, H. (2008). A local sensitivity analysis approach to longitudinal non-Gaussian data with nonignorable dropout. Statistics in Medicine, 27, 3155–3177.MathSciNetCrossRefGoogle Scholar
  24. Xie, H. (2009). Bayesian inference from incomplete longitudinal data: A simple method to quantify sensitivity to nonignorable dropout. Statistics in Medicine, 28, 2725–2747.MathSciNetCrossRefGoogle Scholar
  25. Yu, L. M., Burton, A., & Rivero-Arias, O. (2007). Evaluation of Software for multiple imputation of semi-continuous data. Statistical Methods for Medical Research, 16, 243–258.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Simon Fraser UniversityBurnabyCanada
  2. 2.The University of Illinois at ChicagoChicagoUSA

Personalised recommendations