Advertisement

Improving the Efficiency of the Monte-Carlo Methods Using Ranked Simulated Approach

  • Hani Michel SamawiEmail author
Chapter
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

This chapter explores the concept of using ranked simulated sampling approach (RSIS) to improve the well-known Monte-Carlo methods , introduced by Samawi (1999), and extended to steady-state ranked simulated sampling (SRSIS) by Al-Saleh and Samawi (2000). Both simulation sampling approaches are then extended to multivariate ranked simulated sampling (MVRSIS) and multivariate steady-state ranked simulated sampling approach (MVSRSIS) by Samawi and Al-Saleh (2007) and Samawi and Vogel (2013). These approaches have been demonstrated as providing unbiased estimators and improving the performance of some of the Monte-Carlo methods of single and multiple integrals approximation. Additionally, the MVSRSIS approach has been shown to improve the performance and efficiency of Gibbs sampling (Samawi et al. 2012). Samawi and colleagues showed that their approach resulted in a large savings in cost and time needed to attain a specified level of accuracy.

References

  1. Al-Saleh, M. F., & Al-Omari, A. I., (1999). Multistage ranked set sampling. Journal of Statistical Planning and Inference, 102(2), 273–286.Google Scholar
  2. Al-Saleh, M. F., & Samawi, H. M. (2000). On the efficiency of Monte-Carlo methods using steady state ranked simulated samples. Communication in Statistics- Simulation and Computation, 29(3), 941–954. doi: 10.1080/03610910008813647.CrossRefzbMATHGoogle Scholar
  3. Al-Saleh, M. F., & Zheng, G. (2002). Estimation of multiple characteristics using ranked set sampling. Australian & New Zealand Journal of Statistics, 44, 221–232. doi: 10.1111/1467-842X.00224.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Al-Saleh, M. F., & Zheng, G. (2003). Controlled sampling using ranked set sampling. Journal of Nonparametric Statistics, 15, 505–516. doi: 10.1080/10485250310001604640.
  5. Casella, G., & George, I. E. (1992). Explaining the Gibbs sampler. American Statistician, 46(3), 167–174.Google Scholar
  6. Chib, S., & Greenberg, E. (1994). Bayes inference for regression models with ARMA (p, q) errors. Journal of Econometrics, 64, 183–206. doi: 10.1016/0304-4076(94)90063-9.MathSciNetCrossRefzbMATHGoogle Scholar
  7. David, H. A. (1981). Order statistics(2nd ed.). New York, NY: Wiley.Google Scholar
  8. Evans, M., & Swartz, T. (1995). Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statistical Science, 10(2), 254–272. doi: 10.1214/ss/1177009938.
  9. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409. doi: 10.1080/01621459.1990.10476213.
  10. Gelman, A., & Rubin, D. (1991). An overview and approach to inference from iterative simulation [Technical report]. Berkeley, CA: University of California-Berkeley, Department of Statistics.Google Scholar
  11. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741. doi: 10.1109/TPAMI.1984.4767596.CrossRefzbMATHGoogle Scholar
  12. Hammersley, J. M., & Handscomb, D. C. (1964). Monte-Carlo methods. London, UK: Chapman & Hall. doi: 10.1007/978-94-009-5819-7.
  13. Hastings, W. K. (1970). Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109. doi: 10.1093/biomet/57.1.97.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Johnson, M. E. (1987). Multivariate statistical simulation. New York, NY: Wiley. doi: 10.1002/9781118150740.
  15. Johnson, N. L., & Kotz, S. (1972). Distribution in statistics: Continuous multivariate distributions. New York, NY: Wiley.zbMATHGoogle Scholar
  16. Liu, J. S. (2001). Monte-Carlo strategies in scientific computing. New York, NY: Springer.zbMATHGoogle Scholar
  17. McIntyre, G. A. (1952). A method of unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research, 3, 385–390. doi: 10.1071/AR9520385.
  18. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091. doi: 10.1063/1.1699114.CrossRefGoogle Scholar
  19. Morgan, B. J. T. (1984). Elements of simulation. London, UK: Chapman & Hall. doi: 10.1007/978-1-4899-3282-2.
  20. Plackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60, 516–522. doi: 10.1080/01621459.1965.10480807.MathSciNetCrossRefGoogle Scholar
  21. Robert, C., & Casella, G. (2004). Monte-Carlo statistical methods (2nd ed.). New York, NY: Springer. doi: 10.1007/978-1-4757-4145-2.
  22. Roberts, G. O. (1995). Markov chain concepts related to sampling algorithms. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte-Carlo in practice (pp. 45–57). London, UK: Chapman & Hall.Google Scholar
  23. Samawi, H. M. (1999). More efficient Monte-Carlo methods obtained by using ranked set simulated samples. Communication in Statistics-Simulation and Computation, 28, 699–713. doi: 10.1080/03610919908813573.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Samawi H. M., & Al-Saleh, M. F. (2007). On the approximation of multiple integrals using multivariate ranked simulated sampling. Applied Mathematics and Computation, 188, 345–352. doi: 10.1016/j.amc.2006.09.121.
  25. Samawi, H. M., Dunbar, M., & Chen, D. (2012). Steady state ranked Gibbs sampler. Journal of Statistical Simulation and Computation, 82, 1223–1238. doi: 10.1080/00949655.2011.575378.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Samawi, H. M., & Vogel, R. (2013). More efficient approximation of multiple integration using steady state ranked simulated sampling. Communications in Statistics-Simulation and Computation, 42, 370–381. doi: 10.1080/03610918.2011.636856.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Shreider, Y. A. (1966). The Monte-Carlo method. Oxford, UK: Pergamom Press.zbMATHGoogle Scholar
  28. Stokes, S. L. (1977). Ranked set sampling with concomitant variables. Communications in Statistics—Theory and Methods, 6, 1207–1211. doi: 10.1080/03610927708827563.
  29. Tanner, M. A. (1993). Tools for statistical inference (2nd ed.). New York, NY: Wiley. doi: 10.1007/978-1-4684-0192-9.
  30. Tanner, M. A., & Wong, W. (1987). The calculation of posterior distribution by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528–550. http://dx.doi.org/10.1080/01621459.1987.10478458.
  31. Tierney, L. (1995). Introduction to general state-space Markov chain theory. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov Chain Monte-Carlo in practice (pp. 59–74). London, UK: Chapman & Hall.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiostatisticsJiann-Ping Hsu College Public Health, Georgia Southern UniversityStatesboroGeorgia

Personalised recommendations