Skip to main content

Robust Bayesian Hierarchical Model Using Monte-Carlo Simulation

  • Chapter
  • First Online:
Book cover Monte-Carlo Simulation-Based Statistical Modeling

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

Many clinical trials collect information on multiple longitudinal outcomes. Depending on the nature of the disease and its symptoms, the longitudinal outcomes can be of mixed types, e.g., binary, ordinal and continuous. Clinical studies on Parkinson’s disease (PD) are good examples of this case. Due to the multidimensional nature of PD, it is difficult to identify a single outcome to represent the overall disease status and severity. Thus, clinical studies that search for treatments for PD usually collect multiple outcomes at different visits. In this chapter, we will introduce the multilevel item response theory (MLIRT) models that account for all the information from multiple longitudinal outcomes and provide valid inference for the overall treatment effects. We will also introduce the normal/independent (NI) distributions, which can be easily implemented into the MLIRT model hierarchically, to handle the outlier and heavy tails problems to produce robust inference. Other data features such as dependent censoring and skewness will also be discussed under the MLIRT framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baghfalaki, T., Ganjali, M., & Berridge, D. (2013). Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: A Bayesian approach. Biometrical Journal, 55(6), 844–865.

    Google Scholar 

  • Bushnell, D. M., & Martin, M. L. (1999). Quality of life and Parkinson’s disease: Translation and validation of the US Parkinson’s disease questionnaire (PDQ-39). Quality of Life Research, 8(4), 345–350.

    Google Scholar 

  • Carlin, B. P., & Louis, T. A. (2011). Bayesian methods for data analysis. Boca Raton, FL: Chapman & Hall.

    Google Scholar 

  • Chen, G., & Luo, S. (2016). Robust Bayesian hierarchical model using normal/independent distributions. Biometrical Journal, 58(4), 831–851.

    Google Scholar 

  • Chen, M. H., Shao, Q. M., & Ibrahim, J. G. (2000). Monte Carlo methods in Bayesian computation. New York: Springer Series in Statistics.

    Google Scholar 

  • Cummings, J. L. (1992). Depression and Parkinson’s disease: A review. The American Journal of Psychiatry, 149(4), 443–454.

    Google Scholar 

  • David, D. (2007). Dunson. Bayesian methods for latent trait modelling of longitudinal data. Statistical Methods in Medical Research, 16(5), 399–415.

    Article  MathSciNet  Google Scholar 

  • Elm, J. J., & The NINDS NET-PD Investigators. (2012). Design innovations and baseline findings in a long-term Parkinson’s trial: The National Institute of Neurological Disorders and Stroke exploratory trials in Parkinson’s Disease Long-Term study-1. Movement Disorders, 27(12), 1513–1521.

    Google Scholar 

  • Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., et al. (2004). Levodopa and the progression of Parkinson’s disease. The New England Journal of Medicine, 351(24), 2498–2508.

    Google Scholar 

  • Fox, J. P. (2010). Bayesian item response modeling: Theory and applications. New York: Springer.

    Google Scholar 

  • Geisser, S. (1993). Predictive inference: An introduction (Vol. 55). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC Press.

    Google Scholar 

  • He, B., & Luo, S. (2013). Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson’s disease. Statistical Methods in Medical Research.

    Google Scholar 

  • Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1(4), 465–480.

    Google Scholar 

  • Huang, P., Tilley, B. C., Woolson, R. F., & Lipsitz, S. (2005). Adjusting O’Brien’s test to control type I error for the generalized nonparametric Behrens-Fisher problem. Biometrics, 61(2), 532–539.

    Google Scholar 

  • Jasra, A., Holmes, C. C., & Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20(1), 50–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Kamata, A. (2001). Item analysis by the hierarchical generalized linear model. Journal of Educational Measurement, 38(1), 79–93.

    Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.

    Google Scholar 

  • Lachos, V. H., Bandyopadhyay, D., & Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions. Biometrics, 67(4), 1594–1604.

    Google Scholar 

  • Lachos, V. H., Castro, L. M., & Dey, D. K. (2013). Bayesian inference in nonlinear mixed-effects models using normal independent distributions. Computational Statistics & Data Analysis, 64, 237–252.

    Google Scholar 

  • Lachos, V. H., Dey, D. K., & Cancho, V. G. (2009). Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective. Journal of Statistical Planning and Inference, 139(12), 4098–4110.

    Google Scholar 

  • Lange, K., & Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2(2), 175–198.

    Google Scholar 

  • Lavine, M., & Schervish, M. J. (1999). Bayes factors: What they are and what they are not. The American Statistician, 53(2), 119–122.

    Google Scholar 

  • Lee, S.-Y., & Song, X.-Y. (2004). Evaluation of the bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39(4), 653–686.

    Google Scholar 

  • Lewis, S. M., & Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association, 92(438), 648–655.

    Google Scholar 

  • Liu, C. (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the American Statistical Association, 91(435), 1219–1227.

    Google Scholar 

  • Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Luo, S. (2014). A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time. Statistics in Medicine, 33(4), 580–594.

    Google Scholar 

  • Luo, S., & Wang, J. (2014). Bayesian hierarchical model for multiple repeated measures and survival data: An application to parkinson’s disease. Statistics in Medicine, 33(24), 4279–4291.

    Google Scholar 

  • Luo, S., Lawson, A. B., He, B., Elm, J. J., & Tilley, B. C. (2012). Bayesian multiple imputation for missing multivariate longitudinal data from a Parkinson’s disease clinical trial. Statistical Methods in Medical Research.

    Google Scholar 

  • Luo, S., Ma, J., & Kieburtz, K. D. (2013). Robust Bayesian inference for multivariate longitudinal data by using normal/independent distributions. Statistics in Medicine, 32(22), 3812–3828.

    Google Scholar 

  • Maier, K. S. (2001). A rasch hierarchical measurement model. Journal of Educational and Behavioral Statistics, 26(3), 307–330.

    Google Scholar 

  • McRae, C., Diem, G., Vo, A., O’Brien, C., & Seeberger, Lauren. (2000). Schwab & England: Standardization of administration. Movement Disorders, 15(2), 335–336.

    Google Scholar 

  • Miller, T. M., Balsis, S., Lowe, D. A., Benge, J. F., & Doody, R. S. (2012). Item response theory reveals variability of functional impairment within clinical dementia rating scale stages. Dementia and Geriatric Cognitive Disorders, 32(5), 362–366.

    Google Scholar 

  • MĂĽller, J., Wenning, G. K., Jellinger, K., McKee, A., Poewe, W., & Litvan, I. (2000). Progression of Hoehn and Yahr stages in Parkinsonian disorders: A clinicopathologic study. Neurology, 55(6), 888–891.

    Google Scholar 

  • Parkinson Study Group. (1989). DATATOP: A multicenter controlled clinical trial in early Parkinson’s disease. Archives of Neurology, 46(10), 1052–1060.

    Google Scholar 

  • Parkinson Study Group. (1993). Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The New England Journal of Medicine, 328(3), 176–183.

    Google Scholar 

  • Parkinson Study Group. (2002). A controlled trial of rasagiline in early Parkinson disease: The TEMPO study. Archives of Neurology, 59(12), 1937.

    Google Scholar 

  • Rijmen, F., Tuerlinckx, F., De Boeck, P., & Kuppens, P. (2003). A nonlinear mixed model framework for item response theory. Psychological methods, 8(2), 185.

    Google Scholar 

  • Rosa, G. J. M., Padovani, C. R., & Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal, 45(5), 573–590.

    Google Scholar 

  • Sahu, S. K., Dey, D. K., & Branco, M. D. (2003). A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics, 31(2), 129–150.

    Google Scholar 

  • Samejima, F. (1997). Graded response model. New York: Springer.

    Google Scholar 

  • Snitz, B. E., Yu, L., Crane, P. K., Chang, C.-C. H., Hughes, T. F., & Ganguli, M.(2012). Subjective cognitive complaints of older adults at the population level: An item response theory analysis. Alzheimer Disease & Associated Disorders, 26(4), 344–351.

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.

    Google Scholar 

  • Vaccarino, A. L., Anderson, K., Borowsky, B., Duff, K., Joseph, G., Mark, G., et al. (2011). An item response analysis of the motor and behavioral subscales of the unified Huntington’s disease rating scale in Huntington disease gene expansion carriers. Movement Disorders, 26(5), 877–884.

    Google Scholar 

  • Wang, C., Douglas, J., & Anderson, S. (2002). Item response models for joint analysis of quality of life and survival. Statistics in Medicine, 21(1), 129–142.

    Google Scholar 

  • Weisscher, N., Glas, C. A., Vermeulen, M., & De Haan, R. J. (2010). The use of an item response theory-based disability item bank across diseases: accounting for differential item functioning. Journal of Clinical Epidemiology, 63(5), 543–549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, G., Luo, S. (2017). Robust Bayesian Hierarchical Model Using Monte-Carlo Simulation. In: Chen, DG., Chen, J. (eds) Monte-Carlo Simulation-Based Statistical Modeling . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3307-0_16

Download citation

Publish with us

Policies and ethics