Skip to main content

Monte-Carlo Simulation in Modeling for Hierarchical Generalized Linear Mixed Models

  • Chapter
  • First Online:
Book cover Monte-Carlo Simulation-Based Statistical Modeling

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

It is common to encounter data that have a hierarchical or nested structure. Examples include patients within hospitals within cities, students within classes within schools, factories within industries within states, or families within neighborhoods within census tracts. These structures have become increasingly common in recent times and include variability at each level which must be taken into account. Hierarchical models which account for the variability at each level of the hierarchy, allow for the cluster effects at different levels to be analyzed within the models (Shahian et al. in Ann Thorac Surg, 72(6):2155–2168, 2001). This chapter discusses how the information from different levels can be used to produce a subject-specific model. However, there are often cases when these models do not fit as additional random intercepts and random slopes are added to the model. This addition of additional parameters often leads to non-convergence. We present a simulation study as we explore the cases in these hierarchical models which often lead to non-convergence. We also used the 2011 Bangladesh Demographic and Health Survey data as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin, P. C. (2010). Estimating multilevel logistic regression models when the number of clusters is low: A comparison of different statistical software procedures. The International Journal of Biostatistics, 6(1), 1–20.

    MathSciNet  Google Scholar 

  • Austin, P. C., Manca, A., Zwarenstein, M., Juurlink, D. N., & Stanbrook, M. B. (2010). A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology, 63(2), 142–153.

    Article  Google Scholar 

  • Ene, M., Leighton, E. A., Blue, G. L., & Bell, B. A. (2015). Multilevel models for categorical data using SAS PROC GLIMMIX: The Basics. SAS Global Forum 2015 Proceedings.

    Google Scholar 

  • Hartzel, J., Agresti, A., & Caffo, B. (2001). Multinomial logit random effects models. Statistical Modelling, 1(2), 81–102.

    Article  MATH  Google Scholar 

  • Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. Biometrics, 64(2), 627–634.

    Article  MathSciNet  MATH  Google Scholar 

  • Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2012). Modeling between- and within subject variance in Ecological Momentary Assessment (EMA) data using mixed-effects location scale models. Statistics in Medicine, 31(27), 3328–3336.

    Article  MathSciNet  Google Scholar 

  • Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah: Lawrence Erlbaum Associates Inc.

    MATH  Google Scholar 

  • Irimata, K. M., & Wilson, J. R. (2017). Identifying Intraclass correlations necessitating hierarchical modeling. Journal of Applied Statistics, accepted.

    Google Scholar 

  • Kiernan, K., Tao, J., & Gibbs, P. (2012). Tips and strategies for mixed modeling with SAS/STAT procedures. SAS Global Forum 2012 Proceedings.

    Google Scholar 

  • Kuss, O. (2002). Global goodness-of-fit tests in logistic regression with sparse data. Statistics in Medicine, 21, 3789–3801.

    Article  Google Scholar 

  • Kuss, O. (2002). How to use SAS for logistic regression with correlated data. In SUGI 27 Proceedings (pp. 261–27).

    Google Scholar 

  • Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random effects model: An example. Journal of the Royal Statistical Society. Series C (Applied Statistics), 50(3), 325–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Longford, N. T. (1993). Random coefficient models. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Maas, C. J. M., & Hox, J. J. (2004). The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Computational Statistics & Data Analysis, 46(3), 427–440.

    Article  MathSciNet  MATH  Google Scholar 

  • McMahon, J. M., Pouget, E. R., & Tortu, S. (2006). A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED. Computational Statistics & Data Analysis, 50(12), 3663–3680.

    Article  MathSciNet  MATH  Google Scholar 

  • National Institute of Population Research and Training (NIPORT). (2013). Bangladesh demographic and health survey 2011. NIPORT, MItra and Associates, ICF International: Dhaka Bangladesh, Calverton MD.

    Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General) 135(3), 370–384.

    Google Scholar 

  • Newsom, J. T. (2002). A multilevel structural equation model for dyadic data. Structural Equation Modeling: A Multidisciplinary Journal, 9(3), 431–447.

    Article  MathSciNet  Google Scholar 

  • Rasbash, J., Steele, F., Browne, W. J., & Goldstein, H. (2012). User’s guide to WLwiN, Version 2.26. Centre for Multilevel Modelling, University of Bristol. Retrieved from http://www.bristol.ac.uk/cmm/software/mlwin/download/2-26/manual-web.pdf.

  • Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park: Sage Publications.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Rodriquez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A (Statistics in Society) 158(1), 73–89.

    Google Scholar 

  • SAS Institute Inc. (2013). Base SAS \(^{\textregistered }\) 9.4 Procedure guide: Statistical procedures (2nd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schabenberger, O. (2005). Introducing the GLIMMIX procedure for generalized linear mixed models. SUGI 30 Proceedings, 196–30.

    Google Scholar 

  • Shahian, D. M., Normand, S. L., Torchiana, D. F., Lewis, S. M., Pastore, J. O., Kuntz, R. E., et al. (2001). Cardiac surgery report cards: Comprehensive review and statistical critique. The Annals of Thoracic Surgery, 72(6), 2155–2168.

    Article  Google Scholar 

  • Smyth, G. K. (1989). Generalized linear models with varying dispersion. Journal of the Royal Statistical Society, Series B, 51, 47–60.

    MathSciNet  Google Scholar 

  • Snijders, T. A. B., & Bosker, R. J. (1998). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks: Sage Publications.

    MATH  Google Scholar 

  • Three-level multilevel model in SPSS. (2016). UCLA: Statistical Consulting Group. http://www.ats.ucla.edu/stat/spss/code/three_level_model.htm.

  • Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika, 61(3), 439–447.

    MathSciNet  MATH  Google Scholar 

  • Xie, L., & Madden, L. V. (2014). %HPGLIMMIX: A high-performance SAS macro for GLMM Estimation. Journal of Statistical Software, 58(8).

    Google Scholar 

  • Wilson, J. R., & Lorenz, K. A. (2015). Modeling Binary correlated responses using SAS, SPSS and R. New York: Springer International Publishing.

    Book  MATH  Google Scholar 

  • Wolfinger, D. (1999). Fitting nonlinear mixed models with the new NLMIXED procedure. In Sugi 24 Proceedings (pp. 278–284).

    Google Scholar 

Download references

Acknowledgements

This work is funded in part by the National Institutes of Health Alzheimer’s Consortium Fellowship Grant, Grant No. NHS0007. The content in this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Irimata, K.M., Wilson, J.R. (2017). Monte-Carlo Simulation in Modeling for Hierarchical Generalized Linear Mixed Models. In: Chen, DG., Chen, J. (eds) Monte-Carlo Simulation-Based Statistical Modeling . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3307-0_13

Download citation

Publish with us

Policies and ethics