Skip to main content

Joint Generation of Binary, Ordinal, Count, and Normal Data with Specified Marginal and Association Structures in Monte-Carlo Simulations

  • Chapter
  • First Online:
Monte-Carlo Simulation-Based Statistical Modeling

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

This chapter is concerned with building a unified framework for concurrently generating data sets that include all four major kinds of variables (i.e., binary, ordinal, count, and normal) when the marginal distributions and a feasible association structure are specified for simulation purposes. The simulation paradigm has been commonly employed in a wide spectrum of research fields including the physical, medical, social, and managerial sciences. A central aspect of every simulation study is the quantification of the model components and parameters that jointly define a scientific process. When this quantification cannot be performed via deterministic tools, researchers resort to random number generation (RNG) in finding simulation-based answers to address the stochastic nature of the problem. Although many RNG algorithms have appeared in the literature, a major limitation is that they were not designed to concurrently accommodate all variable types mentioned above. Thus, these algorithms provide only an incomplete solution, as real data sets include variables of different kinds. This work represents an important augmentation of the existing methods as it is a systematic attempt and comprehensive investigation for mixed data generation. We provide an algorithm that is designed for generating data of mixed marginals, illustrate its logistical, operational, and computational details; and present ideas on how it can be extended to span more complicated distributional settings in terms of a broader range of marginals and associational quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amatya, A., & Demirtas, H. (2015). Simultaneous generation of multivariate mixed data with Poisson and normal marginals. Journal of Statistical Computation and Simulation, 85, 3129–3139.

    Article  MathSciNet  Google Scholar 

  • Barbiero, A., & Ferrari, P. A. (2015). Simulation of ordinal and discrete variables with given correlation matrix and marginal distributions. R package GenOrd. https://cran.r-project.org/web/packages/GenOrd

  • Bates D., & Maechler M. (2016). Sparse and dense matrix classes and methods. R package Matrix. http://www.cran.r-project.org/web/packages/Matrix

  • Demirtas, H. (2004a). Simulation-driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica, 58, 466–482.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H. (2004b). Assessment of relative improvement due to weights within generalized estimating equations framework for incomplete clinical trials data. Journal of Biopharmaceutical Statistics, 14, 1085–1098.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2005). Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine, 24, 2345–2363.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2006). A method for multivariate ordinal data generation given marginal distributions and correlations. Journal of Statistical Computation and Simulation, 76, 1017–1025.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H. (2007a). Practical advice on how to impute continuous data when the ultimate interest centers on dichotomized outcomes through pre-specified thresholds. Communications in Statistics-Simulation and Computation, 36, 871–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H. (2007b). The design of simulation studies in medical statistics. Statistics in Medicine, 26, 3818–3821.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2008). On imputing continuous data when the eventual interest pertains to ordinalized outcomes via threshold concept. Computational Statistics and Data Analysis, 52, 2261–2271.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H. (2009). Rounding strategies for multiply imputed binary data. Biometrical Journal, 51, 677–688.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2010). A distance-based rounding strategy for post-imputation ordinal data. Journal of Applied Statistics, 37, 489–500.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2016). A note on the relationship between the phi coefficient and the tetrachoric correlation under nonnormal underlying distributions. American Statistician, 70, 143–148.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H. (2017a). Concurrent generation of binary and nonnormal continuous data through fifth order power polynomials. Communications in Statistics–Simulation and Computation, 46, 489–357.

    Google Scholar 

  • Demirtas, H. (2017b). On accurate and precise generation of generalized Poisson variates. Communications in Statistics–Simulation and Computation, 46, 489–499.

    Google Scholar 

  • Demirtas, H., Ahmadian, R., Atis, S., Can, F. E., & Ercan, I. (2016a). A nonnormal look at polychoric correlations: Modeling the change in correlations before and after discretization. Computational Statistics, 31, 1385–1401.

    Article  MATH  Google Scholar 

  • Demirtas, H., Arguelles, L. M., Chung, H., & Hedeker, D. (2007). On the performance of bias-reduction techniques for variance estimation in approximate Bayesian bootstrap imputation. Computational Statistics and Data Analysis, 51, 4064–4068.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., & Doganay, B. (2012). Simultaneous generation of binary and normal data with specified marginal and association structures. Journal of Biopharmaceutical Statistics, 22, 223–236.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H., Freels, S. A., & Yucel, R. M. (2008). Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment. Journal of Statistical Computation and Simulation, 78, 69–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2007). Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine, 26, 782–799.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2008a). Multiple imputation under power polynomials. Communications in Statistics- Simulation and Computation, 37, 1682–1695.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2008b). Imputing continuous data under some non-Gaussian distributions. Statistica Neerlandica, 62, 193–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2008c). An imputation strategy for incomplete longitudinal ordinal data. Statistics in Medicine, 27, 4086–4093.

    Article  MathSciNet  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2011). A practical way for computing approximate lower and upper correlation bounds. The American Statistician, 65, 104–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., & Hedeker, D. (2016). Computing the point-biserial correlation under any underlying continuous distribution. Communications in Statistics- Simulation and Computation, 45, 2744–2751.

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas, H., Hedeker, D., & Mermelstein, J. M. (2012). Simulation of massive public health data by power polynomials. Statistics in Medicine, 31, 3337–3346.

    Article  MathSciNet  Google Scholar 

  • Demirtas H., Hu Y., & Allozi R. (2016b). Data generation with Poisson, binary, ordinal and normal components, R package PoisBinOrdNor. https://cran.r-project.org/web/packages/PoisBinOrdNor.

  • Demirtas, H., & Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine, 22, 2553–2575.

    Google Scholar 

  • Demirtas, H., & Yavuz, Y. (2015). Concurrent generation of ordinal and normal data. Journal of Biopharmaceutical Statistics, 25, 635–650.

    Article  Google Scholar 

  • Emrich, J. L., & Piedmonte, M. R. (1991). A method for generating high-dimensional multivariate binary variates. The American Statistician, 45, 302–304.

    Google Scholar 

  • Ferrari, P. A., & Barbiero, A. (2012). Simulating ordinal data. Multivariate Behavioral Research, 47, 566–589.

    Article  Google Scholar 

  • Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521–532.

    Article  MATH  Google Scholar 

  • Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université de Lyon Section A, 14, 53–77.

    MATH  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., et al. (2016). Multivariate normal and t distributions. R package mvtnorm. https://cran.r-project.org/web/packages/mvtnorm.

  • Headrick, T. C. (2010). Statistical simulation: power method polynomials and other transformations boca raton. FL: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Higham, N. J. (2002). Computing the nearest correlation matrix—a problem from finance. IMA Journal of Numerical Analysis, 22, 329–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding, W. (1994). Scale-invariant correlation theory. In: N.I. Fisher & P.K. Sen (Eds.), The collected works of Wassily Hoeffding (the original publication year is 1940) (pp. 57–107). New York: Springer.

    Google Scholar 

  • Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105–124.

    MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas. Berlin, Germany: Springer.

    MATH  Google Scholar 

  • R Development Core Team (2016) R: A Language and Environment for Statistical Computing. http://www.cran.r-project.org.

  • Schaefer, J., Opgen-Rhein, R., Zuber, V., Ahdesmaki, M., Silva, A. D., Strimmer, K. (2015). Efficient Estimation of Covariance and (Partial) Correlation. R package corpcor. https://cran.r-project.org/web/packages/BinNonNor.

  • Serfling, R., & Xiao, P. (2007). A contribution to multivariate L-moments: L-comoment matrices. Journal of Multivariate Analysis, 98, 1765–1781.

    Article  MathSciNet  MATH  Google Scholar 

  • Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465–471.

    Article  MATH  Google Scholar 

  • Yahav, I., & Shmueli, G. (2012). On generating multivariate Poisson data in management science applications. Applied Stochastic Models in Business and Industry, 28, 91–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Yucel, R. M., & Demirtas, H. (2010). Impact of non-normal random effects on inference by multiple imputation: A simulation assessment. Computational Statistics and Data Analysis, 54, 790–801.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Demirtas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Demirtas, H., Allozi, R., Hu, Y., Inan, G., Ozbek, L. (2017). Joint Generation of Binary, Ordinal, Count, and Normal Data with Specified Marginal and Association Structures in Monte-Carlo Simulations. In: Chen, DG., Chen, J. (eds) Monte-Carlo Simulation-Based Statistical Modeling . ICSA Book Series in Statistics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3307-0_1

Download citation

Publish with us

Policies and ethics